Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sieving through gut models of colonization resistance

Abstract

The development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host–pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance. However, pathogens are also able to sense and exploit the microbiota during infection. Therefore, obtaining a holistic understanding of colonization resistance mechanisms is essential for the development of microbiome-based and microbiome-targeting therapies for humans and animals. Achieving this is dependent on utilizing physiologically relevant animal models. In this Perspective, we discuss the colonization resistance functions of the gut microbiota and sieve through the advantages and limitations of murine models commonly used to study such mechanisms within the context of enteric bacterial infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Colonization resistance in humans and mouse models.

References

  1. Hözel, D. & Barnes, R. H. Contributions of the intestinal microflora to the nutrition of the host. Vitam. Horm. 24, 115–171 (1967).

    Article  Google Scholar 

  2. Brestoff, J. R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bohnhoff, M., Drake, B. L. & Miller, C. P. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc. Soc. Exp. Biol. Med. 86, 132–137 (1954).

  4. Freter, R. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J. Infect. Dis. 97, 57–65 (1955).

    Article  CAS  PubMed  Google Scholar 

  5. van der Waaij, D., Berghuis-de Vries, J. & Lekkerkerk-van der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. Lond. 69, 405–411 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brugger, S. D., Bomar, L. & Lemon, K. P. Commensal–pathogen interactions along the human nasal passages. PLoS Pathog. 12, e1005633 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. De Cárcer, D. A. et al. Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon. ISME J. 5, 801–809 (2011).

    Article  CAS  Google Scholar 

  9. Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stearns, J. C. et al. Bacterial biogeography of the human digestive tract. Sci. Rep. 1, 170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, M., Ahrné, S., Jeppsson, B. & Molin, G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol. 54, 219–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Booijink, C. C. et al. High temporal and inter‐individual variation detected in the human ileal microbiota. Environ. Microbiol. 12, 3213–3227 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Bellet, M. M. et al. Circadian clock regulates the host response to Salmonella. Proc. Natl Acad. Sci. USA 110, 9897–9902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Curtis, A. M., Bellet, M. M., Sassone-Corsi, P. & O’Neill, L. A. Circadian clock proteins and immunity. Immunity 40, 178–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Jarchum, I. & Pamer, E. G. Regulation of innate and adaptive immunity by the commensal microbiota. Curr. Opin. Immunol. 23, 353–360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1674–1675 (2015).

    Article  CAS  Google Scholar 

  28. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Gibbs, J. et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat. Med. 20, 919–926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morowitz, M. J. et al. Dietary supplementation with nonfermentable fiber alters the gut microbiota and confers protection in murine models of sepsis. Crit. Care Med. 45, 516–523 (2017).

    Article  CAS  Google Scholar 

  31. Rao, S. et al. Pathogen-mediated inhibition of anorexia promotes host survival and transmission. Cell 168, 503–516 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, A. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hicks, L. A. et al. US outpatient antibiotic prescribing variation according to geography, patient population, and provider specialty in 2011. Clin. Infect. Dis. 60, 1308–1316 (2015).

    PubMed  Google Scholar 

  34. Langdon, A., Crook, N. & Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 8, 39 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 120, 4332–4341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ayres, J. S., Trinidad, N. J. & Vance, R. E. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18, 799–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pavia, A. T. et al. Epidemiologic evidence that prior antimicrobial exposure decreases resistance to infection by antimicrobial-sensitive Salmonella. J. Infect. Dis. 161, 255–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leffler, D. A. & Lamont, J. T. Clostridium difficile infection. New Engl. J. Med. 372, 1539–1548 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Furuya-Kanamori, L. et al. Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect. Dis. 15, 516 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Slimings, C. & Riley, T. V. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J. Antimicrob. Chemother. 69, 881–891 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferreyra, J. A. et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 16, 770–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Nood, E. et al Duodenal infusion of donor feces for recurrent Clostridium difficile. New Engl. J. Med. 368, 407–415 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Kampmann, C., Dicksved, J., Engstrand, L. & Rautelin, H. Composition of human faecal microbiota in resistance to Campylobacter infection. Clin. Microbiol. Infect. 22, 61–68 (2016).

  46. Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Antonopoulos, D. A. et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77, 2367–2375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caballero, S. et al. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21, 592–602 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Collins, J. W. et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat. Rev. Microbiol. 12, 612–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Willing, B. P., Vacharaksa, A., Croxen, M., Thanachayanont, T. & Finlay, B. B. Altering host resistance to infections through microbial transplantation. PLoS One 6, e26988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, Y.-G. et al. Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 356, 315–319 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Sprinz, H. et al. The response of the germ-free guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri: with special reference to lymphatic tissue and the intestinal tract. Am. J. Pathol. 39, 681–685 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nardi, R., Silva, M., Vieira, E., Bambirra, E. & Nicoli, J. Intragastric infection of germfree and conventional mice with Salmonella typhimurium. Braz. J. Med. Biol. Res. 22, 1389–1392 (1988).

    Google Scholar 

  55. Zachar, Z. & Savage, D. C. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect. Immun. 23, 168–174 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Inagaki, H., Suzuki, T., Nomoto, K. & Yoshikai, Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect. Immun. 64, 3280–3287 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 16215 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Reeves, A. E., Koenigsknecht, M. J., Bergin, I. L. & Young, V. B. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80, 3786–3794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schamberger, G. P. & Diez-Gonzalez, F. Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7. J. Food Prot. 65, 1381–1387 (2002).

    Article  PubMed  Google Scholar 

  61. Etcheverria, A., Arroyo, G., Perdigon, G. & Parma, A. Escherichia coli with anti‐O157:H7 activity isolated from bovine colon. J. Appl. Microbiol. 100, 384–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rea, M. C. et al. Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. J. Med. Microbiol. 56, 940–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, J., Gänzle, M. G., Lin, X. B., Ruan, L. & Sun, M. Diversity and dynamics of bacteriocins from human microbiome. Environ. Microbiol. 17, 2133–2143 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Cherrington, C.A., Hinton, M., Pearson, G. & Chopra, I. Short-chain organic acids at pH 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J. Appl. Bacteriol. 70, 161–165 (1991).

  67. MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl Acad. Sci. USA 107, 19520–19524 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sana, T. G. et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc. Natl Acad. Sci. USA 113, E5044–E5051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. USA 113, 3627–3632 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anderson, M. C., Vonaesch, P., Saffarian, A., Marteyn, B. S. & Sansonetti, P. J. Shigella sonnei encodes a functional T6SS used for interbacterial competition and niche occupancy. Cell Host Microbe 21, 769–776 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281–1291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leatham, M. P. et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77, 2876–2886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Momose, Y., Hirayama, K. & Itoh, K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie Van Leeuwenhoek 94, 165–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Deriu, E. et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14, 26–37 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gielda, L. M. & DiRita, V. J. Zinc competition among the intestinal microbiota. mBio 3, e00171-12 (2012).

  77. Marteyn, B. et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465, 355–358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lopez, C. A. et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353, 1249–1253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gantois, I. et al. Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72, 946–949 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Kwon, H.-K. et al. Generation of regulatory dendritic cells and CD4+ Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl Acad. Sci. USA 107, 2159–2164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Natividad, J. M. et al. Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl. Environ. Microbiol. 79, 7745–7754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stecher, B. et al. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, e244 (2007).

    Article  PubMed Central  CAS  Google Scholar 

  91. Berger, C. N. et al. Citrobacter rodentium subverts ATP flux and cholesterol homeostasis in intestinal epithelial cells in vivo. Cell Metab. (in the press).

  92. Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bertin, Y. et al. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ. Microbiol. 13, 365–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Luzader, D. H., Clark, D. E., Gonyar, L. A. & Kendall, M. M. EutR is a direct regulator of genes that contribute to metabolism and virulence in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 195, 4947–4953 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fox, K. A. et al. Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis. Proc. Natl Acad. Sci. USA 106, 4435–4440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Faber, F. et al. Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature 534, 697–699 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rivera-Chávez, F. et al. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19, 443–454 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5, 476–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McClelland, M. et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet. 36, 1268–1274 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. White, A. et al. Intergenic sequence comparison of Escherichia coli isolates reveals lifestyle adaptations but not host specificity. Appl. Environ. Microbiol. 77, 7620–7632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, F. et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 33, 6445–6458 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tong, Z. et al. Pseudogene accumulation might promote the adaptive microevolution of Yersinia pestis. J. Med. Microbiol. 54, 259–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Roxas, J. L. et al. Enterohemorrhagic E. coli alters murine intestinal epithelial tight junction protein expression and barrier function in a Shiga toxin independent manner. Lab. Invest. 90, 1152–1168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mundy, R., Girard, F., FitzGerald, A. J. & Frankel, G. Comparison of colonization dynamics and pathology of mice infected with enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and Citrobacter rodentium. FEMS Microbiol. Lett 265, 126–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Wadolkowski, E. A., Burris, J. A. & O’Brien, A. D. Mouse model for colonization and disease caused by enterohemorrhagic Escherichia coli O157: H7. Infect. Immun. 58, 2438–2445 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hapfelmeier, S. et al. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J.Immunol. 174, 1675–1685 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Lindgren, S., Melton, A. & O’Brien, A. Virulence of enterohemorrhagic Escherichia coli O91: H21 clinical isolates in an orally infected mouse model. Infect. Immun. 61, 3832–3842 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Myhal, M., Laux, D. & Cohen, P. Relative colonizing abilities of human fecal and K 12 strains of Escherichia coli in the large intestines of streptomycin-treated mice. Eur. J. Clin. Microbiol. Infect. Dis. 1, 186–192 (1982).

    CAS  Google Scholar 

  112. Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157: H7 in the mouse intestine. PLoS ONE 8, e53957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S. & Kaper, J. B. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)‐encoded regulator (Ler). Mol. Microbiol. 33, 296–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Mullineaux-Sanders, C. et al. Citrobacter rodentium relies on commensals for colonization of the colonic mucosa. Cell Rep. 21, 3381–3389 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Menzies, D. J., Dorsainvil, P. A., Cunha, B. A. & Johnson, D. H. Severe and persistent hypoglycemia due to gatifloxacin interaction with oral hypoglycemic agents. Am. J. Med. 113, 232–234 (2002).

    Article  PubMed  Google Scholar 

  116. Williams, J. Selective toxicity and concordant pharmacodynamics of antibiotics and other drugs. J. Antimicrob. Chemother 35, 721–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Pilot, M. A. Macrolides in roles beyond antibiotic therapy. Br. J. Surg. 81, 1423–1429 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Barnhill, A. E., Brewer, M. T. & Carlson, S. A. Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob. Agents Chemother. 56, 4046–4051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Burroughs, S. & Johnson, G. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin. Blood 75, 1473–1480 (1990).

    CAS  PubMed  Google Scholar 

  120. McLellan, R. A., Drobitch, R. K., Monshouwer, M. & Renton, K. W. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human. Drug Metab. Disposition 24, 1134–1138 (1996).

    CAS  Google Scholar 

  121. Antal, E. J. et al. Linezolid, a novel oxazolidinone antibiotic: assessment of monoamine oxidase inhibition using pressor response to oral tyramine. J. Clin. Pharmacol. 41, 552–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Stecher, B. et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect. Immun. 73, 3228–3241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lawhon, S. D., Maurer, R., Suyemoto, M. & Altier, C. Intestinal short‐chain fatty acids alter Salmonella. typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 46, 1451–1464 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Nakanishi, N. et al. Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology 155, 521–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Curtis, M. M. et al. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe 16, 759–769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Maier, L. et al. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 14, 641–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Reynolds, L. A. et al. Commensal–pathogen interactions in the intestinal tract: Lactobacilli promote infection with, and are promoted by, helminth parasites. Gut Microbes 5, 522–532 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Savage, D. C. & Dubos, R. Alterations in the mouse cecum and its flora produced by antibacterial drugs. J. Exp. Med. 128, 97 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wostmann, B. & Bruckner-Kardoss, E. Cecal enlargment in germ-free animals. Am. J. Physiol. 197, 1346 (1960).

    Google Scholar 

  133. Tannock, G. W. & Savage, D. C. Indigenous microorganisms prevent reduction in cecal size induced by Salmonella typhimurium in vaccinated gnotobiotic mice. Infect. Immun. 13, 172–179 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Barbara, G. et al Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am. J. Gastroenterol. 100, 2560–2568 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Kamath, P. S., Phillips, S. & Zinsmeister, A. R. Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology 95, 1496–1502 (1988).

    Article  CAS  PubMed  Google Scholar 

  136. Ge, X. et al Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. 15, 13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Anitha, M., Vijay–Kumar, M., Sitaraman, S. V., Gewirtz, A. T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Huang, Y.-L., Chassard, C., Hausmann, M., Von Itzstein, M. & Hennet, T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat. Commun. 6, 8141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl Acad. Sci. USA 111, 13145–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. von Schillde, M.-A. et al. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 11, 387–396 (2012).

    Article  CAS  Google Scholar 

  142. Castagliuolo, I., Riegler, M. F., Valenick, L., LaMont, J. T. & Pothoulakis, C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect. Immun. 67, 302–307 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Resta-Lenert, S. & Barrett, K. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52, 988–997 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mack, D. R., Michail, S., Wei, S., McDougall, L. & Hollingsworth, M. A. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. Gastrointest. Liver Physiol. 276, G941–G950 (1999).

    Article  CAS  Google Scholar 

  145. Rautava, S., Arvilommi, H. & Isolauri, E. Specific probiotics in enhancing maturation of IgA responses in formula-fed infants. Pediatr. Res. 60, 221–224 (2006).

    Article  PubMed  Google Scholar 

  146. Collins, J. W. et al Fermented dairy products modulate C. rodentium induced colonic hyperplasia. J. Infect. Dis. 210, 1029–1041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Allen, S. J. et al. Lactobacilli and Bifidobacteria in the prevention of antibiotic-associated diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 382, 1249–1257 (2013).

    Article  PubMed  Google Scholar 

  148. Maldonado-Gómez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016).

    Article  PubMed  CAS  Google Scholar 

  149. Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109 (2015).

    Article  PubMed  Google Scholar 

  150. Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811 (2016).

    Article  PubMed  Google Scholar 

  152. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article  CAS  Google Scholar 

  154. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.E. is supported by Y. and R. Ungar; the Leona M. and Harry B. Helmsley Charitable Trust; and grants funded by the European Research Council, and is a senior fellow at the Canadian Institute for Advanced Research (CIFAR) and an International Scholar at the Bill and Melinda Gates Foundation and Howard Hughes Medical Institute (HHMI). This work was supported by grant MR/N00695X/1 from the AMR cross research council initiative under theme 1: Understanding resistant bacteria in the context of the host (C.M.S. and G.F.) and a Royal Society International Collaboration Award for Research Professors, ref: IC160080 (G.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gad Frankel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullineaux-Sanders, C., Suez, J., Elinav, E. et al. Sieving through gut models of colonization resistance. Nat Microbiol 3, 132–140 (2018). https://doi.org/10.1038/s41564-017-0095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0095-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing