Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron

Abstract

Hydrogen embrittlement jeopardizes the use of high-strength steels in critical load-bearing applications. However, uncertainty regarding how hydrogen affects dislocation motion, owing to the lack of quantitative experimental evidence, hinders our understanding of hydrogen embrittlement. Here, by studying the well-controlled, cyclic, bow-out motions of individual screw dislocations in α-iron, we find that the critical stress for initiating dislocation motion in a 2 Pa electron-beam-excited H2 atmosphere is 27–43% lower than that in a vacuum environment, proving that hydrogen enhances screw dislocation motion. Moreover, we find that aside from vacuum degassing, cyclic loading and unloading facilitates the de-trapping of hydrogen, allowing the dislocation to regain its hydrogen-free behaviour. These findings at the individual dislocation level can inform hydrogen embrittlement modelling and guide the design of hydrogen-resistant steels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experimental set-up for revealing the effect of hydrogen on dislocation motion.
Fig. 2: Effect of hydrogenation on the bow-out motion of a screw dislocation.
Fig. 3: Effect of hydrogen degassing on dislocation behaviour.
Fig. 4: Atomistic mechanism of hydrogen-enhanced screw dislocation glide.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Beachem, C. D. A new model for hydrogen-assisted cracking (hydrogen ‘embrittlement’). Metall. Mater. Trans. B 3, 441–455 (1972).

    Article  Google Scholar 

  2. Birnbaum, H. K. & Sofronis, P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng. A 176, 191–202 (1994).

    Article  CAS  Google Scholar 

  3. Oriani, R. A. A mechanistic theory of hydrogen embrittlement of steels. Ber. Bunsenges. Phys. Chem. 76, 848–857 (1972).

    CAS  Google Scholar 

  4. Sakaki, K. et al. The effect of hydrogen on vacancy generation in iron by plastic deformation. Scr. Mater. 55, 1031–1034 (2006).

    Article  CAS  Google Scholar 

  5. Li, S. et al. The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe. Int. J. Plast. 74, 175–191 (2015).

    Article  CAS  Google Scholar 

  6. Kimura, A. & Birnbaum, H. K. Plastic softening by hydrogen plasma charging in pure iron. Scr. Metall. Mater. 21, 53–57 (1987).

    Article  CAS  Google Scholar 

  7. Matsui, H., Kimura, H. & Moriya, S. The effect of hydrogen on the mechanical properties of high purity iron I. Softening and hardening of high purity iron by hydrogen charging during tensile deformation. Mater. Sci. Eng. 40, 207–216 (1979).

    Article  CAS  Google Scholar 

  8. Martin, M. L., Dadfarnia, M., Nagao, A., Wang, S. & Sofronis, P. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Mater. 165, 734–750 (2019).

    Article  CAS  Google Scholar 

  9. Gong, P., Nutter, J., Rivera-Diaz-Del-Castillo, P. E. J. & Rainforth, W. M. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels. Sci. Adv. 6, eabb6152 (2020).

    Article  CAS  Google Scholar 

  10. Birenis, D. et al. Interpretation of hydrogen-assisted fatigue crack propagation in bcc iron based on dislocation structure evolution around the crack wake. Acta Mater. 156, 245–253 (2018).

    Article  CAS  Google Scholar 

  11. Song, J. & Curtin, W. A. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2013).

    Article  CAS  Google Scholar 

  12. Wang, S., Hashimoto, N. & Ohnuki, S. Hydrogen-induced change in core structures of {110}[111] edge and {110}[111] screw dislocations in iron. Sci. Rep. 3, 2760 (2013).

    Article  Google Scholar 

  13. Koyama, M. et al. Origin of micrometer-scale dislocation motion during hydrogen desorption. Sci. Adv. 6, eaaz1187 (2020).

    Article  CAS  Google Scholar 

  14. Yin, S. et al. Hydrogen embrittlement in metallic nanowires. Nat. Commun. 10, 2004 (2019).

    Article  Google Scholar 

  15. Katzarov, I. H., Pashov, D. L. & Paxton, A. T. Hydrogen embrittlement I. Analysis of hydrogen-enhanced localized plasticity: effect of hydrogen on the velocity of screw dislocations in α-Fe. Phys. Rev. Mater. 1, 033602 (2017).

    Article  Google Scholar 

  16. Kirchheim, R. Solid solution softening and hardening by mobile solute atoms with special focus on hydrogen. Scr. Mater. 67, 767–770 (2012).

    Article  CAS  Google Scholar 

  17. Yu, P., Cui, Y., Zhu, G., Shen, Y. & Wen, M. The key role played by dislocation core radius and energy in hydrogen interaction with dislocations. Acta Mater. 185, 518–527 (2020).

    Article  CAS  Google Scholar 

  18. Cottrell, A. H. & Bilby, B. A. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sect. A 62, 49–62 (1949).

    Article  Google Scholar 

  19. Schoeck, G. & Seeger, A. The flow stress of iron and its dependence on impurities. Acta Metall. 7, 469–477 (1959).

    Article  CAS  Google Scholar 

  20. Shih, D. S., Robertson, I. M. & Birnbaum, H. K. Hydrogen embrittlement of α titanium: in situ TEM studies. Acta Metall. 36, 111–124 (1988).

    Article  CAS  Google Scholar 

  21. Bond, G. M., Robertson, I. M. & Birnbaum, H. K. Effects of hydrogen on deformation and fracture processes in high-purity aluminium. Acta Metall. 36, 2193–2197 (1988).

    Article  CAS  Google Scholar 

  22. Matsumoto, T., Eastman, J. & Birnbaum, H. K. Direct observations of enhanced dislocation mobility due to hydrogen. Scr. Metall. Mater. 15, 1033–1037 (1981).

    Article  CAS  Google Scholar 

  23. Rozenak, P., Robertson, I. M. & Birnbaum, H. K. HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel. Acta Metall. Mater. 38, 2031–2040 (1990).

    Article  CAS  Google Scholar 

  24. Tabata, T. & Birnbaum, H. K. Direct observations of the effect of hydrogen on the behavior of dislocations in iron. Scr. Metall. Mater. 17, 947–950 (1983).

    Article  CAS  Google Scholar 

  25. Xie, D. et al. Hydrogenated vacancies lock dislocations in aluminium. Nat. Commun. 7, 13341 (2016).

    Article  CAS  Google Scholar 

  26. Song, J. & Curtin, W. A. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system. Acta Mater. 68, 61–69 (2014).

    Article  CAS  Google Scholar 

  27. Vitek, V. Core structure of screw dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding. Philos. Mag. 84, 415–428 (2004).

    Article  CAS  Google Scholar 

  28. Maresca, F., Dragoni, D., Csányi, G., Marzari, N. & Curtin, W. A. Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian approximation potential. npj Comput. Mater. 4, 69 (2018).

    Article  Google Scholar 

  29. Wen, M., Fukuyama, S. & Yokogawa, K. Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater. 51, 1767–1773 (2003).

    Article  CAS  Google Scholar 

  30. Itakura, M., Kaburaki, H., Yamaguchi, M. & Okita, T. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: a first-principles study. Acta Mater. 61, 6857–6867 (2013).

    Article  CAS  Google Scholar 

  31. Chen, X. et al. In situ atomic-scale observation of inhomogeneous oxide reduction. Chem. Commun. 54, 7342–7345 (2018).

    Article  CAS  Google Scholar 

  32. Shan, Z. W. et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115–119 (2008).

    Article  CAS  Google Scholar 

  33. Xie, D. et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899–903 (2015).

    Article  CAS  Google Scholar 

  34. Hirth, J. P. Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11, 861–890 (1980).

    Article  Google Scholar 

  35. Hale, L. M. & Becker, C. A. Vacancy dissociation in body-centered cubic screw dislocation cores. Comput. Mater. Sci. 135, 1–8 (2017).

    Article  CAS  Google Scholar 

  36. Cheng, B., Paxton, A. T. & Ceriotti, M. Hydrogen diffusion and trapping in α-iron: the role of quantum and anharmonic fluctuations. Phys. Rev. Lett. 120, 225901 (2018).

    Article  CAS  Google Scholar 

  37. Kimizuka, H. & Ogata, S. Slow diffusion of hydrogen at a screw dislocation core in α-iron. Phys. Rev. B 84, 024116 (2011).

    Article  Google Scholar 

  38. Ramasubramaniam, A., Itakura, M. & Carter, E. A. Interatomic potentials for hydrogen in α–iron based on density functional theory. Phys. Rev. B 79, 174101 (2009).

    Article  Google Scholar 

  39. Zhu, T., Li, J., Samanta, A., Leach, A. & Gall, K. Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  Google Scholar 

  40. Chen, D., Costello, L. L., Geller, C. B., Zhu, T. & McDowell, D. L. Atomistic modeling of dislocation cross-slip in nickel using free-end nudged elastic band method. Acta Mater. 168, 436–447 (2019).

    Article  CAS  Google Scholar 

  41. Gordon, P., Neeraj, T., Li, Y. & Li, J. Screw dislocation mobility in bcc metals: the role of the compact core on double-kink nucleation. Model. Simul. Mater. Sci. Eng. 18, 085008 (2010).

    Article  Google Scholar 

  42. Narayanan, S., McDowell, D. L. & Zhu, T. Crystal plasticity model for bcc iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation. J. Mech. Phys. Solids 65, 54–68 (2014).

    Article  CAS  Google Scholar 

  43. Huang, S., Chen, D., Song, J., Zhu, T. & McDowell, D. L. Hydrogen embrittlement of grain boundaries in nickel: an atomistic study. npj Comput. Mater. 4, 69 (2017).

    Google Scholar 

  44. Sun, B. et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels. Nat. Mater. 20, 1629–1634 (2021).

    Article  CAS  Google Scholar 

  45. Robertson, I. M. The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 68, 671–692 (2001).

    Article  Google Scholar 

  46. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  47. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Natural Science Foundation of China (51971169 and 52031011) and Shaanxi Postdoctoral Science Foundation (2017JQ5110). D.C. acknowledges support from Shanghai Pujiang Program (21PJ1404800). We thank Y. Qin, D. Zhang, P. Zhang, C. Guo and Q. Fu for assistance in sample preparation and guidance for doing transmission electron microscope experiments. We thank Z. Wang (Xi’an Jiaotong University), S. Ogata (Osaka University), C. Zhou and L. Zhang (Zhejiang University of Technology), and L. Qiao and Y. Su (University of Science and Technology Beijing) for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Z.S. and D.X. designed and supervised the project. L.H. and D.X. conducted the experiments and analysed the experimental data. D.C. performed the simulations under the guidance of T.Z. and Y.Z.; L.H., D.X. and D.C. wrote the paper with input from S.L., Z.S., E.M., J.L., T.Z. and D.R. All authors contributed to discussions of the results and the revision of the manuscript.

Corresponding authors

Correspondence to Degang Xie or Zhiwei Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Legends for Supplementary Videos 1–6, Figs. 1–8, Table 1, Notes 1–6 and refs. 1–12.

Supplementary Video 1

Motion of dislocation 1 in vacuum.

Supplementary Video 2

Motion of dislocation 1 in 2 Pa H2 atmosphere.

Supplementary Video 3

Motion of dislocation 3 in vacuum.

Supplementary Video 4

Motion of dislocation 3 in 2 Pa H2 atmosphere.

Supplementary Video 5

Motion of dislocation 2 in 2 Pa H2 atmosphere.

Supplementary Video 6

Motion of dislocation 2 in vacuum after the sample had been degassed in vacuum for ~3 h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Chen, D., Xie, D. et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron. Nat. Mater. 22, 710–716 (2023). https://doi.org/10.1038/s41563-023-01537-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01537-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing