Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant magnon spin conductivity in ultrathin yttrium iron garnet films

Abstract

Conductivities are key material parameters that govern various types of transport (electronic charge, spin, heat and so on) driven by thermodynamic forces. Magnons, the elementary excitations of the magnetic order, flow under the gradient of a magnon chemical potential1,2,3 in proportion to a magnon (spin) conductivity. The magnetic insulator yttrium iron garnet is the material of choice for efficient magnon spin transport. Here we report a giant magnon conductivity in thin yttrium iron garnet films with thicknesses down to 3.7 nm when the number of occupied two-dimensional subbands is reduced from a large number to a few, which corresponds to a transition from three-dimensional to two-dimensional magnon transport. We extract a two-dimensional magnon spin conductivity around 1 S at room temperature, comparable to the (electronic) conductivity of the high-mobility two-dimensional electron gas in GaAs quantum wells at millikelvin temperatures4. Such high conductivities offer opportunities to develop low-dissipation magnon-based spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device layout.
Fig. 2: Angular dependence of the normalized non-local signal \(\frac{{V}_{{{{\rm{nl}}}}}(\omega)}{IL}\).
Fig. 3: Distance dependence of the non-local resistance \({R}_{{{{\rm{nl}}}}}^{1\omega }\).
Fig. 4: Thickness dependence of the non-local magnon transport.

Similar content being viewed by others

Data availability

The data of the article and Supplementary Information are available from the corresponding author upon reasonable request.

Code availability

Numerical simulations in this work are performed using the commercial finite-element software COMSOL MULTIPHYSICS (v.5.4). All related codes are available from the corresponding author upon reasonable request.

References

  1. Cornelissen, L. J., Peters, K. J. H., Bauer, G. E. W., Duine, R. A. & van Wees, B. J. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94, 014412 (2016).

    Article  Google Scholar 

  2. Chunhui, D. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    Article  Google Scholar 

  3. Olsson, K. S. et al. Pure spin current and magnon chemical potential in a nonequilibrium magnetic insulator. Phys. Rev. X 10, 021029 (2020).

    CAS  Google Scholar 

  4. Chung, Y. J. et al. Ultra-high-quality two-dimensional electron systems. Nat. Mater. 20, 632–637 (2021).

    Article  CAS  Google Scholar 

  5. Brataas, A., van Wees, B., Klein, O., de Loubens, G. & Viret, M. Spin insulatronics. Phys. Rep. 885, 1–27 (2020).

    Article  CAS  Google Scholar 

  6. Cornelissen, L. J., Liu, J., Duine, R. A., Ben Youssef, J. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  CAS  Google Scholar 

  7. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article  CAS  Google Scholar 

  8. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

    Article  CAS  Google Scholar 

  9. Cornelissen, L. J., Liu, J., van Wees, B. J. & Duine, R. A. Spin-current-controlled modulation of the magnon spin conductance in a three-terminal magnon transistor. Phys. Rev. Lett. 120, 097702 (2018).

    Article  CAS  Google Scholar 

  10. Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    Article  CAS  Google Scholar 

  11. Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).

    Article  Google Scholar 

  12. Althammer, M. All-electrical magnon transport experiments in magnetically ordered insulators. Phys. Status Solidi Rapid Res. Lett. 15, 2100130 (2021).

    Article  CAS  Google Scholar 

  13. Wimmer, T. et al. Spin transport in a magnetic insulator with zero effective damping. Phys. Rev. Lett. 123, 257201 (2019).

    Article  CAS  Google Scholar 

  14. Liu, J., Wei, X.-Y., Bauer, G. E. W., Ben Youssef, J. & van Wees, B. J. Electrically induced strong modulation of magnon transport in ultrathin magnetic insulator films. Phys. Rev. B 103, 214425 (2021).

    Article  CAS  Google Scholar 

  15. Yu, T., Sharma, S., Blanter, Y. M. & Bauer, G. E. W. Surface dynamics of rough magnetic films. Phys. Rev. B 99, 174402 (2019).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Hybrid magnonics: physics, circuits, and applications for coherent information processing. J. Appl. Phys. 128, 130902 (2020).

    Article  CAS  Google Scholar 

  17. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  18. Takahashi, S. & Maekawa, S. Spin injection and detection in magnetic nanostructures. Phys. Rev. B 67, 052409 (2003).

    Article  Google Scholar 

  19. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  20. Gomez-Perez, J. M., Vélez, S., Hueso, L. E. & Casanova, F. Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12. Phys. Rev. B 101, 184420 (2020).

    Article  CAS  Google Scholar 

  21. Shan, J. et al. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons. Phys. Rev. B 94, 174437 (2016).

    Article  Google Scholar 

  22. Laughton, M. A. & Say, M. G. Electrical Engineer’s Reference Book (Elsevier, 2013).

  23. Klingler, S. et al. Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques. J. Phys. D Appl. Phys. 48, 015001 (2014).

    Article  Google Scholar 

  24. Stamps, R. & Camley, R. Solid State Physics Vol. 65 (Elsevier Science, 2014).

  25. Kikkawa, T. et al. Critical suppression of spin Seebeck effect by magnetic fields. Phys. Rev. B 92, 064413 (2015).

    Article  Google Scholar 

  26. Jin, H., Boona, S. R., Yang, Z., Myers, R. C. & Heremans, J. P. Effect of the magnon dispersion on the longitudinal spin Seebeck effect in yttrium iron garnets. Phys. Rev. B 92, 054436 (2015).

    Article  Google Scholar 

  27. Jamison, J. S. et al. Long lifetime of thermally excited magnons in bulk yttrium iron garnet. Phys. Rev. B 100, 134402 (2019).

    Article  CAS  Google Scholar 

  28. Fang, H., Zhang, S. & Tserkovnyak, Y. Generalized model of magnon kinetics and subgap magnetic noise. Phys. Rev. B 105, 184406 (2022).

    Article  CAS  Google Scholar 

  29. Streib, S., Vidal-Silva, N., Shen, K. & Bauer, G. E. W. Magnon-phonon interactions in magnetic insulators. Phys. Rev. B 99, 184442 (2019).

    Article  CAS  Google Scholar 

  30. Man, H. et al. Direct observation of magnon-phonon coupling in yttrium iron garnet. Phys. Rev. B 96, 100406 (2017).

    Article  Google Scholar 

  31. Bender, S. A., Duine, R. A. & Tserkovnyak, Y. Electronic pumping of quasiequilibrium Bose-Einstein-condensed magnons. Phys. Rev. Lett. 108, 246601 (2012).

    Article  Google Scholar 

  32. Divinskiy, B. et al. Evidence for spin current driven Bose-Einstein condensation of magnons. Nat. Commun. 12, 6541 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Klein for insightful discussions. We also acknowledge the helpful discussion with J. Shan and T. Yu. We acknowledge the technical support from J. G. Holstein, H. de Vries, H. Adema, T. Schouten and A. Joshua. X.-Y.W. and B.J.v.W. acknowledge the support from the research programme ‘Skyrmionics’ (project no. 170), which is financed by the Dutch Research Council (NWO). X.-Y.W., O.A.S., C.H.S.L. and B.J.v.W. also acknowledge the support by NanoLab NL and the Spinoza Prize awarded in 2016 to B.J.v.W. by NWO. G.E.W.B. was supported by JSPS Kakenhi grant 19H00645.

Author information

Authors and Affiliations

Authors

Contributions

B.J.v.W. and X.-Y.W. conceived the experiments. X.-Y.W. designed and carried out the experiments, with help from O.A.S.; J.B.Y. supplied the YIG samples used in the fabrication of devices. X.-Y.W., O.A.S., C.H.S.L., G.E.W.B. and B.J.v.W. were involved in the analysis. X.-Y.W. wrote the paper with O.A.S., G.E.W.B. and B.J.v.W. All authors commented on the manuscript.

Corresponding author

Correspondence to X.-Y. Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1–3 and Discussion.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, XY., Santos, O.A., Lusero, C.H.S. et al. Giant magnon spin conductivity in ultrathin yttrium iron garnet films. Nat. Mater. 21, 1352–1356 (2022). https://doi.org/10.1038/s41563-022-01369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01369-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing