Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basement membrane stiffness determines metastases formation

Abstract

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of ‘normal’ BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association of the expression of genes encoding for BM proteins with breast cancer patient survival.
Fig. 2: Net4-deficient alveolar BM favours metastases formation.
Fig. 3: Net4-deficient alveolar and mesenteric vessel BM favours metastases formation.
Fig. 4: Influence of Net4 on the mechanical properties of the BM.
Fig. 5: Decrease of BM stiffness via disrupting ternary laminin node complexes.
Fig. 6: Impact of BM mechanics on metastasis.

Similar content being viewed by others

Data availability

All data used to generate graphs are available in the respective source data. The generated liquid chromatography–mass spectrometry data are available via the PRIDE database of ProteomeXchange (PXD022145). Data used in this study were taken from previously published datasets including the NKI breast cancer dataset (https://ccb.nki.nl/data/), normal breast data (https://github.com/monkgroupie/Disease-Specific-Genomic-Analysis), kidney dataset (GSE3538 and GSE3931), CANBUILD dataset (GEO: GSE71340), human melanoma scRNA-seq dataset (GEO: GSE72056), bulk melanoma RNA-seq data via TCGA (Human Skin Cutaneous Melanoma (SKCM)). Source data are provided with this paper.

Code availability

Custom codes of DSGA analysis of breast and kidney cancer datasets are available at GitHub (https://github.com/monkgroupie/publication_code). The custom code of the mathematical simulation of the impact of node dilution on the laminin network and overall BM stiffness is available via https://doi.org/10.17169/refubium-28413.

References

  1. Dillekas, H., Rogers, M. S. & Straume, O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 8, 5574–5576 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yurchenco, P. D. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a004911 (2011).

  6. McKee, K. K., Harrison, D., Capizzi, S. & Yurchenco, P. D. Role of laminin terminal globular domains in basement membrane assembly. J. Biol. Chem. 282, 21437–21447 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M. & Murphy, C. J. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 299, 39–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Gaiko-Shcherbak, A. et al. The acinar cage: basement membranes determine molecule exchange and mechanical stability of human breast cell acini. PLoS ONE 10, e0145174 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yurchenco, P. D. & Ruben, G. C. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J. Cell Biol. 105, 2559–2568 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Linder, S. Invadosomes at a glance. J. Cell Sci. 122, 3009–3013 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Glentis, A. et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat. Commun. 8, 924 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Couchman, J. R. & Gibson, W. T. Expression of basement membrane components through morphological changes in the hair growth cycle. Dev. Biol. 108, 290–298 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Nelson, T. R., Charonis, A. S., McIvor, R. S. & Butkowski, R. J. Identification of a cDNA encoding tubulointerstitial nephritis antigen. J. Biol. Chem. 270, 16265–16270 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki, T., Gohring, W., Pan, T. C., Chu, M. L. & Timpl, R. Binding of mouse and human fibulin-2 to extracellular matrix ligands. J. Mol. Biol. 254, 892–899 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Sato, S. et al. Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat. Neurosci. 11, 923–931 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Veit, G. et al. Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J. Biol. Chem. 281, 3494–3504 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Timpl, R. & Brown, J. C. Supramolecular assembly of basement membranes. Bioessays 18, 123–132 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Mayorca-Guiliani, A. E. et al. Decellularization and antibody staining of mouse tissues to map native extracellular matrix structures in 3D. Nat. Protoc. https://doi.org/10.1038/s41596-019-0225-8 (2019).

    Article  PubMed  Google Scholar 

  20. Koch, M. et al. A novel member of the netrin family, beta-netrin, shares homology with the beta chain of laminin: identification, expression, and functional characterization. J. Cell Biol. 151, 221–234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  PubMed  Google Scholar 

  22. Nicolau, M., Tibshirani, R., Borresen-Dale, A. L. & Jeffrey, S. S. Disease-specific genomic analysis: identifying the signature of pathologic biology. Bioinformatics 23, 957–965 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y. N. et al. The expression and function of netrin-4 in murine ocular tissues. Exp. Eye Res. 96, 24–35 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Miner, J. H., Cunningham, J. & Sanes, J. R. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J. Cell Biol. 143, 1713–1723 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Higgins, J. P. et al. Gene expression in the normal adult human kidney assessed by complementary DNA microarray. Mol. Biol. Cell 15, 649–656 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, H. et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 3, e13 (2006).

    Article  PubMed  Google Scholar 

  28. Hu, Y. et al. Netrin-4 promotes glioblastoma cell proliferation through integrin beta4 signaling. Neoplasia 14, 219–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jayachandran, A. et al. Identifying and targeting determinants of melanoma cellular invasion. Oncotarget 7, 41186–41202 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Larrieu-Lahargue, F., Welm, A. L., Thomas, K. R. & Li, D. Y. Netrin-4 induces lymphangiogenesis in vivo. Blood 115, 5418–5426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lv, B. et al. Netrin-4 as a biomarker promotes cell proliferation and invasion in gastric cancer. Oncotarget 6, 9794–9806 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Villanueva, A. A. et al. The netrin-4/neogenin-1 axis promotes neuroblastoma cell survival and migration. Oncotarget 8, 9767–9782 (2017).

    Article  PubMed  Google Scholar 

  33. Li, L. et al. NEtrin-4 protects glioblastoma cells from temozolomide induced senescence. PLoS ONE 8, e80363 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Esseghir, S. et al. Identification of NTN4, TRA1, and STC2 as prognostic markers in breast cancer in a screen for signal sequence encoding proteins. Clin. Cancer Res. 13, 3164–3173 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Eveno, C. et al. Netrin-4 delays colorectal cancer carcinomatosis by inhibiting tumor angiogenesis. Am. J. Pathol. 178, 1861–1869 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujikane, T. et al. Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res. Treat. 122, 699–710 (2010).

    Article  PubMed  Google Scholar 

  37. Nacht, M. et al. Netrin-4 regulates angiogenic responses and tumor cell growth. Exp. Cell Res. 315, 784–794 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Reuten, R. et al. Structural decoding of netrin-4 reveals a regulatory function towards mature basement membranes. Nat. Commun. 7, 13515 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mayorca-Guiliani, A. E. et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 23, 890–898 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Trout, A. T., Rabinowitz, R. S., Platt, J. F. & Elsayes, K. M. Melanoma metastases in the abdomen and pelvis: frequency and patterns of spread. World J. Radiol. 5, 25–32 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cancer Genome Atlas, N. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).

    Article  Google Scholar 

  44. Tucker, W. D., Arora, Y. & Mahajan, K. Anatomy, Blood Vessels (StatPearls, 2020).

  45. Candiello, J. et al. Biomechanical properties of native basement membranes. FEBS J. 274, 2897–2908 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Halfter, W. et al. Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adh. Migr. 7, 64–71 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Last, J. A., Liliensiek, S. J., Nealey, P. F. & Murphy, C. J. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J. Struct. Biol. 167, 19–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhave, G., Colon, S. & Ferrell, N. The sulfilimine cross-link of collagen IV contributes to kidney tubular basement membrane stiffness. Am. J. Physiol. Ren. Physiol. 313, F596–F602 (2017).

    Article  CAS  Google Scholar 

  49. Chlasta, J. et al. Variations in basement membrane mechanics are linked to epithelial morphogenesis. Development 144, 4350–4362 (2017).

    CAS  PubMed  Google Scholar 

  50. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Irianto, J., Pfeifer, C. R., Xia, Y. & Discher, D. E. SnapShot: mechanosensing matrix. Cell 165, 1820–1820 e1821 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pearce, O. M. T. et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 8, 304–319 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Wullkopf, L. et al. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell 29, 2378–2385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lubensky, T. C., Kane, C. L., Mao, X., Souslov, A. & Sun, K. Phonons and elasticity in critically coordinated lattices. Rep. Prog. Phys. 78, 073901 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11, M111 014647 (2012).

    Article  PubMed  Google Scholar 

  56. Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109–113 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Johnstone, C. N. et al. Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis. Model Mech. 8, 237–251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Aslakson, C. J. & Miller, F. R. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 52, 1399–1405 (1992).

    CAS  PubMed  Google Scholar 

  59. Morton, J. P. et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 139, 292–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Kowarz, E., Loscher, D. & Marschalek, R. Optimized sleeping beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Schjorring, O. L., Carlsson, R. & Simonsen, U. Pressure myography to study the function and structure of isolated small arteries. Methods Mol. Biol. 1339, 277–295 (2015).

    Article  PubMed  Google Scholar 

  65. Butt, H. J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1-7 (1995).

  66. Docheva, D. et al. Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. J. Cell. Mol. Med. 12, 537–552 (2008).

    Article  PubMed  Google Scholar 

  67. Prein, C. et al. Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy. Matrix Biol. 50, 1–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Sneddon, I. N. Boussinesq’s problem for a rigid cone. Math. Proc. Camb. Philos. Soc. 44, 492–507 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  69. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    Article  MathSciNet  Google Scholar 

  70. Ott, D., Reihani, S. N. & Oddershede, L. B. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering. Rev. Sci. Instrum. 85, 053108 (2014).

    Article  ADS  PubMed  Google Scholar 

  71. Selhuber-Unkel, C., Yde, P., Berg-Sorensen, K. & Oddershede, L. B. Variety in intracellular diffusion during the cell cycle. Phys. Biol. 6, 025015 (2009).

    Article  ADS  PubMed  Google Scholar 

  72. Tolic-Norrelykke, I. M., Munteanu, E. L., Thon, G., Oddershede, L. & Berg-Sorensen, K. Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N.M. Christensen at the Center for Advanced Bioimaging (CAB), University of Copenhagen for providing microscope access, M. Ghilav and C. Hoffman for valuable experimental help on mouse perfusion and electron microscopy preparation, M.K.G. Høg and Britt Kongstofte for preparation of tissue samples, and L. Amandus and B.L. Kristensen for their support with all aspects of mouse handling. The melanoma patient RNA-seq dataset analysed here is in part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. This work was supported by the European Research Council (ERC-2015-CoG-682881-MATRICAN (R.R., M.N., A.E.M.-G. and J.T.E.)); the Danish Cancer Society (R204-A12454 (R.R.), R146-A9250 (A.L.) and R167-A10618 (S.R.N.)); German Cancer Aid (R.R.); a Hallas Møller Stipend from the Novo Nordisk Foundation (J.T.E.); the German Research Foundation (DFG) (NI 1895/1-1 (D.N.), CRC1114/C02 (S.Z. and R.R.N.), FOR2722/B2 (M.K.) and CRC829 (W.B.)); a PhD fellowship from the Lundbeck Foundation (R286-2018-621 (M.R.)); a postdoctoral fellowship from the Lundbeck Foundation (R250-2017-389 (E.M.S.)); a grant from the Novo Nordisk Foundation (Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, NNF17CC0027852 (E.M.S., B.T.P., H.K. and K.J.W.) and NNF19SA0035442 (B.F.)); the Danish Research Council (DFF-4002-00099 (L.W. and L.B.O.)); grants from the UK Medical Research Council (MR/R005567-1 (T.V.A.) and BHF (PG/15/92/31813 (T.V.A.)); a BHF studentship (FS/15/64/32035 (S.M.)); CANTER Research Focus of the Bavarian State Ministry for Science and Education (L.F., S.K., C.P., S.S. and H.C.S.); a CRUK Centre of Excellence Award to Barts Cancer Centre (C16420/A18066 (E.M.)); a CRUK fellowship (A27947 (O.M.T.P.)); the Ragnar Söderberg Foundation Sweden (N91/15 (C.D.M.)); the Swedish Research Council (2017-03389 (C.D.M.)); Cancerfonden Sweden (CAN 2016/783, 19 0632 Pj and 190007 (C.D.M.)); the Åke Wiberg Foundation (M17-0235 (C.D.M.)); and the Crafoord Foundation (20171049 (C.D.M.)).

Author information

Authors and Affiliations

Authors

Contributions

R.R. hypothesized the mechanism and developed the project idea. R.R. and J.T.E. conceived and designed the study. R.R. defined the BM gene list. R.R., A.L., K.W.Z. and S.R.N. performed animal experiments. M.N. performed the genomic association analysis of BM genes with assistance from R.R. S.R.N. performed staining, imaging and analysis of stromal cells within E0771 primary tumours. R.R. performed proliferation experiments. A.L. performed contraction assays. S.Z., R.R.N. and R.R. developed the laminin network stiffness model. S.Z. and R.R.N. performed elastic module simulation of the laminin network. L.F. and H.S.C. performed AFM analysis of the alveolar BM. S.K., C.P. and S.S. performed the AFM analysis of Matrigel. D.N. established the cancer cell invasion assay. D.N. and R.R. produced the recombinant proteins and performed invasion assays. M.R., E.M.S., B.F., B.T.P. and R.R. prepared and performed mass spectrometry experiments. H.K. and K.J.W. performed the scRNA-seq analysis. L.W. and L.B.O. performed optical tweezer experiments. S.M. and T.V.A. performed pressure myography measurements. R.R. and F.S. performed the immunofluorescence staining. E.M. and O.M.T.P. performed the analysis of BM gene association with ovarian patient tissue stiffness. M.K. provided the Net4 knockout mouse model and Net4-specific antibody. A.E.M.-G. performed the decellularization of lung and mesentery. C.D.M. and R.R. performed the imaging of the immunofluorescence staining. W.B. performed transmission electron microscopy analysis. R.R., J.T.E., M.N. and S.Z. wrote the paper. A.E.M.-G. drew the illustrations in Figs. 2a,g, 3b,i, 4a,c and 6b,c. R.R. generated the graphics in Figs. 5a,g and 6a and Extended Data Fig. 10a. R.R. and J.T.E. supervised the project. All authors discussed the results and commented on the manuscript text.

Corresponding authors

Correspondence to Raphael Reuten or Janine T. Erler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks P. Mehlen, P. Yurchenco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Distribution of Normal versus Disease components in breast cancer patients and association of Net4 with kidney cancer patient survival.

a, Plots of consensus vs. overall associations in the Disease components, the Normal components, and the nonDSGA data. Most significant association with survival is captured in the Normal component of data. b, Kaplan Meier survival (death) analysis using Cox proportional hazard models for association with survival of NTN4 expression levels in the Normal component of renal cell carcinoma. Survival analysis comparison of (tumor group 1) low levels of NTN4 (33 percentile) vs. (tumor group 2) high levels of NTN4 (67 percentile) in the Normal component of data. High levels of NTN4 show significant association with good survival with P value 0.0157. c, Kaplan Meier survival (recurrence) analysis for association with survival of NTN4 levels in the Normal component of renal cell carcinoma. Survival analysis comparison of (tumor group 1) low levels of NTN4 (33 percentile) vs. (tumor group 2) high levels of NTN4 (67 percentile) in Normal component of data. High levels of NTN4 showed significant association with good survival with P value 0.0252.

Source data

Extended Data Fig. 2 Validation of E0771 primary tumor from Net4 knockout and wildtype mice.

a, Immunofluorescence and immunohistochemistry staining of primary E0771 tumors grown in Net4 wildtype (WT) and Net4 knockout (KO) animals. Different stromal cell types were detected using αSMA (fibroblasts), F4/80 (macrophages), and CD8a (T-cells). Scale bar, 100 µm. Box and whiskers blot of cell type amount within primary tumor tissues (two-tailed Unpaired t test, Min to Max, median is shown as line, mean is displayed as cross, data points appear as grey dots; n = 6; t = 0.2948 (αSMA), t = 0.3001 (F4/80), t = 0.1246 (CD8a), df = 10; ns, not significant). b, Proliferation of cancer cell lines (E0771, 4T1, MDA-MB-231, and HCmel12) treated without (ctrl) and with different concentrations of Net4 (0.1, 3.6, 5.2 µg/well) for 96 h. Absorbance was normalized to ctrl. Scatter dot blot together with bars of proliferation assay (E0771: Kruskal-Wallis test, mean is the top of the bar; STDEV; n = 12 (ctrl and 0.1 µg/well), n = 9 (3.6 and 5.2 µg/well); ns, not significant; **P < 0.01, ***P < 0.001), (4T1, MDA-MB-231, and HCmel12: Ordinary one-way ANOVA test, mean is the top of the bar; n = 11 (4T1 and MDA-MB-231: ctrl), n = 12 (HCmel12: ctrl), n = 9 (3.6 and 5.2 µg/well); F = 5.938, DF = 37 (4T1); F = 1.254, DF = 37 (MDA-MB-231); F = 1.430, DF = 38 (HCmel12); ns, not significant; *P < 0.05, **P < 0.01). c, Contraction assay of cancer-associated fibroblast cell lines (mCAF1 and mCAF2) within collagen c1 and 7.2 µg/well) of recombinant Net4 (Net4) and its respective laminin binding mutant Net4 E195A,R199A (Mut) for 72 h. Representative image of the contraction assay showing the contracted area at the well rim. Scatter dot blot together with bars of contraction assay, in which all values are normalized to the control (Ordinary one-way ANOVA test, mean is the top of the bar; STDEV; n = 9; ns, not significant).

Source data

Extended Data Fig. 3 Breast cancer cell sphere invasion into Matrigel supplemented with Net4.

a, Representative images of sphere invasion assay using MDA-MB-231 cells in Matrigel (ctrl) and Matrigel containing 25% Net4 molecules (Net4) relative to laminin 111 within the Matrigel matrix. Scale bar, 100 µm. Statistical analysis of sphere invasion (two-tailed Unpaired t test, Scatter dot blot, mean is displayed as black line; n = 27 of each sphere normalized to the mean of all ctrl spheres; t = 5.386, df = 52; ****P < 0.0001). b, Representative images of sphere invasion assay using MDA-MB-231 cells in 1.5 mg/ml collagen I (ctrl) and in 1.5 mg/ml collagen I containing 5.2 μg/sphere Net4 (Net4) or 5.2 μg/sphere Net4 laminin binding mutant (Mut) (Net4 molecule number equal to number in 50% Net4 Matrigel sphere). Scale bar, 100 μm. Statistical analysis of sphere invasion (Kruskal-Wallis test, Scatter dot blot, median is shown as line; n = 23 (ctrl and Mut) and n = 20 (Net4); ***P < 0.001, ****P < 0.0001).

Source data

Extended Data Fig. 4 Validation of Net4 knockout mouse.

a, Immunofluorescence staining of decellularized lungs from Net4 WT and Net4 KO animals for Net4 (green), laminin γ1 (red), and collagen IV (cyan). Representative images of lung tissues from 3 mice of each genotype. Scale bar, 50 μm. b, Volcano plot of all identified proteins within five lung tissues from each Net4 WT and KO mice from the whole proteome LC-MS analysis. The plot visualizes the comparison of the protein abundance in lung tissues from WT vs. KO mice (x-axis: log2 ratio KO vs. WT; y-axis: -log10 P value). The red box highlights proteins with a log2 ratio KO vs. WT below -0.5 and the green box above 0.5 together with a P value above 0.05 (-log10 p-value 1.3). Both boxes indicate proteins with significant differential expression and relevant effect sizes between Net4 WT and KO lung tissue. Proteins, which belong to the total proteome, are shown as grey squares. Matrisome proteins are marked as blue squares and identified BM proteins (see Supplementary Table 1) as red squares. The volcano plot emphasizes that there are no BM proteins significantly changed between Net4 WT and KO mouse lung tissues.

Extended Data Fig. 5 Net4 deficient pulmonary BM favors metastases formation independent of endogenous Ntn4 expression.

a, Representative images of sphere invasion assay using HCmel12 cells in Matrigel (ctrl) and Matrigel containing 25% Net4 molecules (Net4) relative to laminin 111 within the Matrigel matrix. Scale bar, 100 µm. Statistical analysis of sphere invasion (two-tailed Unpaired t test, Scatter dot blot, mean is displayed as black line; n = 16 (ctrl), n = 23 (Net4); t = 4.728, df = 37; ****P < 0.0001). b, Quantitative real time PCR determining the relative concentration of mouse and human Net4 (Ntn4 and NTN4, respectively) expression to the housekeeping gene RPLP0 in different cell lines used in this study (HEK293, MDA-MB-231, E0771, 4T1, HCMel12, and KPC-mT4). Statistical analysis of expression levels (Kruskal-Wallis test, Scatter dot blot, median is shown as line; n = 12; **P < 0.01). c, Representative H&E images (from mice with the mean metastasis number and area) from Net4 WT and Net4 KO mice 28 days after intravenous injection of E0771 Ntn4 CRISPR/Cas9 knockout cells. Scale bar, 3 mm. d, Statistical analysis of macroscopic lung metastases (two-tailed Unpaired t test, Box and whiskers blot, Min to Max, median is shown as line, mean is displayed as cross, all data points appear as grey dots; n = 13 (WT), n = 12 (KO); t = 2.126, df = 23; *P < 0.05) e, Statistical analysis of microscopic lung metastasis, area/metastasis, and total metastasis area of intravenous injection of Ntn4 deficient E0771 cells into Net4 WT and Net4 KO mice after 28 days (two-tailed Mann-Whitney test, Box and whiskers blot, Min to Max, median is shown as line, mean is displayed as cross, all data points appear as grey dots; n = 13 (WT), n = 12 (KO); **P < 0.01).

Source data

Extended Data Fig. 6 scRNA-seq analysis in melanoma patients.

a, UMAP plot highlights cell clusters (B-cells, cancer-associated fibroblasts (CAFs), endothelial cells, macrophages, melanoma cells, NK-cells, and T-cells) of 4,645 cells from 19 melanoma tumor patients. b, UMAP plot indicating cell type-specific NTN4 expression. c, UMAP plot of cell type-specific expression over the 49 BM genes.

Source data

Extended Data Fig. 7 scRNA-seq analysis of BM protein encoding genes in melanoma patients.

Violin plots of 49 BM genes using scRNA-seq from 19 melanoma tumor patients.

Source data

Extended Data Fig. 8 Impact of Net4 deficiency on mesenteric vessels.

a, Immunofluorescence staining of decellularized mesentery showing mesenteric vessels from Net4 WT and Net4 KO animals stained for Net4 (green), laminin γ1 (red), and collagen IV (cyan). Representative images of mesenteric vessels from 2 mice of each genotype. Scale bar, 100 μm. b, Inner diameter (µm) of isolated mesenteric arteries from 5 months old Net4 WT and KO mice as measured by pressure myography (Linear regression test, mean ± STDEV; n = 5 individual mice per group; ns, not significant). c, Outer diameter (µm) of isolated mesenteric arteries from 5 months old Net4 WT and KO mice as measured by pressure myography (Linear regression test, mean ± STDEV; n = 5 individual mice per group; ns, not significant).

Source data

Extended Data Fig. 9 Correlation of NTN4 expression with malignant and BM markers.

a, Graph depicts the correlation between the Net4 (NTN4) gene expression level and the expression level of the malignant marker PAX8 in 31 ovarian cancer patients (Pearson’s p-value = 4.758 e−5, r = −0.6633402). b, Graph depicts the correlation between the Net4 (NTN4) gene expression level and the expression level of the malignant marker EPCAM in 31 ovarian cancer patients (Pearson’s p-value = 2.893 e−4, r = −0.6075367). c, Graph depicts the correlation between the Net4 (NTN4) gene expression level and the expression level of BM encoding genes (BM ssgsea score, calculated using R package GSVA) in 31 ovarian cancer patients (Pearson’s p-value = 2.734 e−4, r = 0.6094658). These graphs highlight a negative correlation of NTN4 expression with malignant cell markers and a positive correlation with BM encoding genes in ovarian cancer patients. d, Graph highlights the correlation of BM encoding genes with NTN4 expression levels within ovarian cancer patients (x-axis) to the Normal component of breast cancer patients (y-axis) (Pearson’s p-value = 0.031, r = 0.37). BM genes significantly correlating with NTN4 expression in both cancer types are indicated with black dots (Laminin α2 (LAMA2), fibulin-5 (FBLN5), and fibulin-3 (EFEMP1)).

Source data

Extended Data Fig. 10 Laminin network dilutions impact stiffness.

a, Scheme of the AFM experiment to determine the Young’s modulus of Matrigel titrated with increasing Net4 amounts (red dots). b, Histograms reveal the Young’s modulus of measurements of pure Matrigel (black) and of increasing amounts (%) of Net4 molecules to laminin 111 molecules inside the Matrigel matrix (red). The amount of Net4 molecule addition is based on the ratio between Net4 and laminin 111 molecules in %. c, Graph displays data points for the stiffness change (%) of Matrigel plotted against laminin node dilution (%) obtained through the AFM measurement of different amounts of Net4 inside the Matrigel (Mixing) and the titration of Matrigel with increasing Net4 amounts (Titration). d, Scatter dot blot of the scaling exponent α of endogenous tracer movement measured by optical tweezers quantifying cytoplasmic visco-elastic properties of 4T1 cells inside Matrigel (ctrl), Matrigel supplemented with 50% Net4 (Net4) or with 50% Mut (Mut) *****(Kruskal-Wallis test, mean is displayed as grey line; n = 96 (ctrl), n = 82 (Net4), n = 104 (Mut); ns, not significant; *P < 0.05, ****P < 0.0001). e, Scatter dot blot of the scaling exponent α of endogenous tracer movement measured by optical tweezers quantifying cytoplasmic visco-elastic properties of measurements of KPC cells inside Matrigel (ctrl), Matrigel supplemented with 50% Net4 (Net4) or with 50% Mut (Mut) (Kruskal-Wallis test, mean is displayed as grey line; n = 94 (ctrl), n = 86 (Net4), n = 97 (Mut); ns, not significant; **P < 0.01, ***P < 0.001). f, Phase diagram showing the transition of the diluted honeycomb elastic networks from the floppy to the elastic state under increasing extensional strain for different dilution fractions. g, Rescaled elastic modulus Elam(ϕ)/Elam(0) extracted from simulations of the 2D diluted honeycomb network.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

List of BM-encoding genes. Table includes the protein names of BM proteins, their human and mouse Uniprot IDs, and their presence in the NKI breast cancer, scRNA-seq and ovarian cancer datasets, and their detection in mouse lung tissue via TMT-labelled liquid chromatography–mass spectrometry analysis.

Supplementary Table 2

TMT liquid chromatography–mass spectrometry analysis table. List of all identified proteins in Net4 wildtype and knockout mice. Additionally, sheet 2 shows all identified matrisome proteins and sheet 3 is sorted for BM proteins.

Supplementary Table 3

List of correlation values for BM-encoding genes with tissue stiffness. List of Pearson’s and Spearman’s P and r values of all BM-encoding genes in 31 ovarian cancer patients (CANBUILD dataset).

Supplementary Table 4

Correlation values of BM-encoding gene expression levels with NTN4 expression. Table depicts Pearson’s P and r values of the correlation of BM-encoding genes with NTN4 in ovarian cancer patients and the Normal component of breast cancer patients. Genes that significantly correlate in both cancer types with NTN4 expression are highlighted in green.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuten, R., Zendehroud, S., Nicolau, M. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021). https://doi.org/10.1038/s41563-020-00894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00894-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer