Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Martian landscapes of fluvial ridges carved from ancient sedimentary basin fill

Abstract

Large sedimentary basins contain archives of Earth history. It is unknown to what extent similar basins existed on Mars because there are few observations relating to the subsurface and it is difficult to identify buried deposits. Here, we used numerical simulations to show that landscapes of networks of topographic ridges that are abundant on the surface of Mars may represent erosional windows into thick, basin-filling river deposits that accumulated over long time spans. We used a numerical model to drive hillslope creep and differential erosion from the wind to simulate Mars-like exhumation processes acting on basin-filling fluvial strata, which we based on those buried in the Gulf of Mexico on Earth, as imaged using three-dimensional reflectance seismology. Simulations produced remarkably Martian landscapes in which the preferential erosion of mudstone relative to sandstone channel belts leads to the development of complex patterns of intersecting ridges. Our findings contrast to the existing view of ridged Martian landscapes as thin-skinned surface deposits preserving fluvial landscapes at a snapshot in time. Instead, the ridge cross-cutting patterns produced by the model reflect the exhumation of channel bodies at different stratigraphic levels, exposing basin strata accumulated over time scales of 500,000 years. Thus, we propose that fluvial ridges on Mars may expose an archive of long-lived aqueous processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fluvial ridges and sandstone cliffs on Mars.
Fig. 2: Horizontal slices showing river channel belts in the 3D seismic volume.
Fig. 3: Hillshade maps showing the evolution of fluvial ridges.
Fig. 4: Synthetic landscapes and difference maps from the three experiments.

Similar content being viewed by others

Data availability

The 3D seismic volume used to generate the experimental results is available in Caltech’s Research Data Repository74.

Code availability

The numerical model used in the experiments is available in Caltech’s Research Data Repository74.

References

  1. Foreman, B. Z., Heller, P. L. & Clementz, M. T. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary. Nature 491, 92–95 (2012).

    Article  Google Scholar 

  2. Paola, C. Quantitative models of sedimentary basin filling. Sedimentology 47, 121–178 (2000).

    Article  Google Scholar 

  3. Nyberg, B. & Howell, J. A. Is the present the key to the past? A global characterization of modern sedimentary basins. Geology 43, 643–646 (2015).

    Article  Google Scholar 

  4. McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

    Article  Google Scholar 

  5. Simms, A. R., Anderson, J. B., Milliken, K. T., Taha, Z. P. & Wellner, J. S. Geomorphology and age of the oxygen isotope stage 2 (last lowstand) sequence boundary on the northwestern Gulf of Mexico continental shelf. Geol. Soc. Lond. Spec. Publ. 277, 29–46 (2007).

    Article  Google Scholar 

  6. Cloud, P. Paleoecological significance of the banded iron-formation. Econ. Geol. 68, 1135–1143 (1973).

    Article  Google Scholar 

  7. Summons, R. E. et al. Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).

    Article  Google Scholar 

  8. McMahon, S. et al. A field guide to finding fossils on Mars. J. Geophys. Res. Planets 123, 1012–1040 (2018).

    Article  Google Scholar 

  9. Goudge, T. A., Mohrig, D., Cardenas, B. T., Hughes, C. M. & Fassett, C. I. Stratigraphy and paleohydrology of delta channel deposits, Jezero Crater, Mars. Icarus 301, 58–75 (2018).

    Article  Google Scholar 

  10. Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, aac7575–aac7575 (2015).

    Article  Google Scholar 

  11. Irwin, R. P., Lewis, K. W., Howard, A. D. & Grant, J. A. Paleohydrology of Eberswalde Crater, Mars. Geomorphology 240, 83–101 (2015).

    Article  Google Scholar 

  12. Dickson, J. L., Lamb, M. P., Williams, R. M. E., Hayden, A. T. & Fischer, W. W. The global distribution of depositional rivers on early Mars. Geology 49, 504–509 (2020).

    Article  Google Scholar 

  13. Grotzinger, J. P. & Milliken, R. E. Sedimentary geology of Mars. Society for Sedimentary Geology https://doi.org/10.2110/pec.12.102 (2012).

  14. Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001).

    Article  Google Scholar 

  15. Malin, M. C. & Edgett, K. S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003).

    Article  Google Scholar 

  16. Edgett, K. S. et al. Extraformational sediment recycling on Mars. Geosphere https://doi.org/10.1130/GES02244.1 (2020).

  17. Edgett, K. S. & Sarkar, R. Recognition of sedimentary rock occurrences in satellite and aerial images of other worlds—insights from Mars. Remote Sens. 13, 4296 (2021).

    Article  Google Scholar 

  18. Carter, L. M. et al. Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus 199, 295–302 (2009).

    Article  Google Scholar 

  19. Banerdt, W. B. et al. Initial results from the InSight mission on Mars. Nat. Geosci. 13, 183–189 (2020).

    Article  Google Scholar 

  20. Williams, R. M. E., Jr, Thomas, C. C. & Eby, D. E. Exhumed paleochannels in central Utah—analogs for raised curvilinear features on Mars. in Central Utah: Diverse Geology of a Dynamic Landscape 221–235 (Utah Geological Association, 2007).

  21. Cardenas, B. T., Mohrig, D. & Goudge, T. A. Fluvial stratigraphy of valley fills at Aeolis Dorsa, Mars: evidence for base-level fluctuations controlled by a downstream water body. GSA Bull. 130, 484–498 (2018).

    Article  Google Scholar 

  22. DiBiase, R. A., Limaye, A. B., Scheingross, J. S., Fischer, W. W. & Lamb, M. P. Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118, 1285–1302 (2013).

    Article  Google Scholar 

  23. Hayden, A. T. et al. Formation of sinuous ridges by inversion of river-channel belts in Utah, USA, with implications for Mars. Icarus 332, 92–110 (2019).

    Article  Google Scholar 

  24. Balme, M. R. et al. Aram Dorsum: an extensive mid-Noachian age fluvial depositional system in Arabia Terra, Mars. J. Geophys. Res. Planets 125, e2019JE006244 (2020).

    Article  Google Scholar 

  25. Stack, K. M. et al. Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray Formation, Gale Crater, Mars. Sedimentology 66, 1768–1802 (2019).

    Article  Google Scholar 

  26. Day, M. & Kocurek, G. Observations of an aeolian landscape: from surface to orbit in Gale Crater. Icarus 280, 37–71 (2016).

    Article  Google Scholar 

  27. Hayden, A. T. & Lamb, M. P. Fluvial sinuous ridges of the Morrison Formation, USA: meandering, scarp retreat, and implications for mars. J. Geophys. Res. Planets 125, e2020JE006470 (2020).

    Article  Google Scholar 

  28. Cardenas, B. T. et al. The anatomy of exhumed river-channel belts: bedform to belt-scale river kinematics of the Ruby Ranch Member, Cretaceous Cedar Mountain Formation, Utah, USA. Sedimentology 67, 3655–3682 (2020).

    Article  Google Scholar 

  29. Zaki, A. S., Pain, C. F., Edgett, K. S. & Castelltort, S. Global inventory of fluvial ridges on Earth and lessons applicable to Mars. Earth Sci. Rev. 216, 103561 (2021).

    Article  Google Scholar 

  30. Butcher, F. E. G., Conway, S. J. & Arnold, N. S. Are the Dorsa Argentea on Mars eskers? Icarus 275, 65–84 (2016).

    Article  Google Scholar 

  31. Bleacher, J. E. et al. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars. J. Volcanol. Geotherm. Res. 342, 29–46 (2017).

    Article  Google Scholar 

  32. Milliken, K. T., Blum, M. D., Snedden, J. W. & Galloway, W. E. Application of fluvial scaling relationships to reconstruct drainage-basin evolution and sediment routing for the Cretaceous and Paleocene of the Gulf of Mexico. Geosphere 14, 749–767 (2018).

    Article  Google Scholar 

  33. Hart, B. S. Channel detection in 3-D seismic data using sweetness. American Association of Petroleum Geologists Bulletin 92, 733–742 (2008).

    Article  Google Scholar 

  34. Straub, K. M., Paola, C., Mohrig, D., Wolinsky, M. A. & George, T. Compensational stacking of channelized sedimentary deposits. J. Sediment. Res. 79, 673–688 (2009).

    Article  Google Scholar 

  35. Kite, E. S. et al. Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. 5, eaav7710 (2019).

    Article  Google Scholar 

  36. Hughes, C. M., Cardenas, B. T., Goudge, T. A. & Mohrig, D. Deltaic deposits indicative of a paleo-coastline at Aeolis Dorsa, Mars. Icarus 317, 442–453 (2019).

    Article  Google Scholar 

  37. Davis, J. M. et al. A diverse array of fluvial depositional systems in Arabia Terra: evidence for mid-Noachian to early Hesperian rivers on Mars. J. Geophys. Res. Planets 124, 1913–1934 (2019).

    Article  Google Scholar 

  38. Howard, A. D. Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 91, 332–363 (2007).

    Article  Google Scholar 

  39. Aylward, D. S., Schmidt, L. M. & Levy, J. S. Formation of coarse sediment lags in ice–sediment mixtures: a geomorphic signature of sublimation on regolith surfaces. Planet. Space Sci. 174, 8–13 (2019).

    Article  Google Scholar 

  40. Lefort, A., Burr, D. M., Beyer, R. A. & Howard, A. D. Inverted fluvial features in the Aeolis-Zephyria Plana, western Medusae Fossae Formation, Mars: evidence for post-formation modification. J. Geophys. Res. Planets 117, E03007 (2012).

    Article  Google Scholar 

  41. Matsubara, Y. et al. River meandering on Earth and Mars: a comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102–120 (2015).

    Article  Google Scholar 

  42. Irwin, R. P. & Watters, T. R. Geology of the Martian crustal dichotomy boundary: age, modifications, and implications for modeling efforts. J. Geophys. Res. Planets 115, E11006 (2010).

    Article  Google Scholar 

  43. Brennand, T. A. Macroforms, large bedforms and rhythmic sedimentary sequences in subglacial eskers, south-central Ontario: implications for esker genesis and meltwater regime. Sediment. Geol. 91, 9–55 (1994).

    Article  Google Scholar 

  44. Cummings, D. I. et al. Sequence stratigraphy of a glaciated basin fill, with a focus on esker sedimentation. GSA Bull. 123, 1478–1496 (2011).

    Article  Google Scholar 

  45. Rhéty, M. et al. A comparison of cooling-limited and volume-limited flow systems: examples from channels in the Piton de la Fournaise April 2007 lava-flow field. Geochem. Geophys. Geosyst. 18, 3270–3291 (2017).

    Article  Google Scholar 

  46. Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. The Borealis Basin and the origin of the Martian crustal dichotomy. Nature 453, 1212–1215 (2008).

    Article  Google Scholar 

  47. Ganti, V., Hajek, E. A., Leary, K., Straub, K. M. & Paola, C. Morphodynamic hierarchy and the fabric of the sedimentary record. Geophys. Res. Lett. 47, e2020GL087921 (2020).

    Article  Google Scholar 

  48. Jerolmack, D. J. & Paola, C. Shredding of environmental signals by sediment transport. Geophys. Res. Lett. 37, L19401 (2010).

    Article  Google Scholar 

  49. Paola, C., Ganti, V., Mohrig, D., Runkel, A. C. & Straub, K. M. Time not our time: physical controls on the preservation and measurement of geologic time. Annu. Rev. Earth Planet. Sci. 46, 409–438 (2018).

    Article  Google Scholar 

  50. Galloway, W. E., Whiteaker, T. L. & Ganey-Curry, P. History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere 7, 938–973 (2011).

    Article  Google Scholar 

  51. Galloway, W. E., Ganey-Curry, P. E., Li, X. & Buffler, R. T. Cenozoic depositional history of the Gulf of Mexico basin. AAPG Bull. 84, 1743–1774 (2000).

    Google Scholar 

  52. Blum, M. & Pecha, M. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology 42, 607–610 (2014).

    Article  Google Scholar 

  53. Wood, L. J. Quantitative seismic geomorphology of Pliocene and Miocene fluvial systems in the Northern Gulf of Mexico, U.S.A. J. Sediment. Res. 77, 713–730 (2007).

    Article  Google Scholar 

  54. Maynard, J. R. Fluvial response to active extension: evidence from 3D seismic data from the Frio Formation (Oligo–Miocene) of the Texas Gulf of Mexico Coast, USA. Sedimentology 53, 515–536 (2006).

    Article  Google Scholar 

  55. Jobe, Z. R., Howes, N. C. & Auchter, N. C. Comparing submarine and fluvial channel kinematics: implications for stratigraphic architecture. Geology 44, 931–934 (2016).

    Article  Google Scholar 

  56. Radovich, B. J. & Oliveros, R. B. 3-D sequence interpretation of seismic instantaneous attributes from the Gorgon Field. Lead. Edge 17, 1286–1293 (1998).

    Article  Google Scholar 

  57. Hart, B. Stratigraphically significant attributes. Lead. Edge 27, 320–324 (2008).

    Article  Google Scholar 

  58. Hart, B. S. Whither seismic stratigraphy? Interpretation 1, SA3–SA20 (2013).

    Article  Google Scholar 

  59. Armstrong, C., Mohrig, D., Hess, T., George, T. & Straub, K. M. Influence of growth faults on coastal fluvial systems: examples from the late Miocene to Recent Mississippi River Delta. Sediment. Geol. 301, 120–132 (2014).

    Article  Google Scholar 

  60. Hobley, D. E. J. et al. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surf. Dynam. 5, 21–46 (2017).

    Article  Google Scholar 

  61. Barnhart, K. R. et al. Short communication: Landlab v2.0: a software package for Earth surface dynamics. Earth Surf. Dynam. 8, 379–397 (2020).

    Article  Google Scholar 

  62. Beyer, R. A., Alexandrov, O. & McMichael, S. The Ames Stereo Pipeline: NASA’s open source software for deriving and processing terrain data. Earth Space Sci. 5, 537–548 (2018).

    Article  Google Scholar 

  63. Malin, M. C. et al. Context Camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 112, E05S04 (2007).

    Article  Google Scholar 

  64. Sagan, C. Sandstorms and eolian erosion on Mars. J. Geophys. Res. (1896–1977) 78, 4155–4161 (1973).

    Article  Google Scholar 

  65. Pain, C. F., Clarke, J. D. A. & Thomas, M. Inversion of relief on Mars. Icarus 190, 478–491 (2007).

    Article  Google Scholar 

  66. Burr, D. M. et al. Pervasive aqueous paleoflow features in the Aeolis/Zephyria Plana region, Mars. Icarus 200, 52–76 (2009).

    Article  Google Scholar 

  67. Anderson, R. S. & Haff, P. K. Simulation of eolian saltation. Science 241, 820–823 (1988).

    Article  Google Scholar 

  68. Day, M., Anderson, W., Kocurek, G. & Mohrig, D. Carving intracrater layered deposits with wind on Mars. Geophys. Res. Lett. 43, 2473–2479 (2016).

    Article  Google Scholar 

  69. Kite, E. S., Lewis, K. W., Lamb, M. P., Newman, C. E. & Richardson, M. I. Growth and form of the mound in Gale Crater, Mars: slope wind enhanced erosion and transport. Geology 41, 543–546 (2013).

    Article  Google Scholar 

  70. Sklar, L. S. & Dietrich, W. E. Sediment and rock strength controls on river incision into bedrock. Geology 29, 1087–1090 (2001).

    Article  Google Scholar 

  71. Golombek, M. P. et al. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. Planets 119, 2522–2547 (2014).

    Article  Google Scholar 

  72. Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111, E12S10 (2006).

    Google Scholar 

  73. Richardson, P. W., Perron, J. T. & Schurr, N. D. Influences of climate and life on hillslope sediment transport. Geology 47, 423–426 (2019).

    Article  Google Scholar 

  74. Cardenas, B.T. Martian landscapes carved from ancient sedimentary basin fill – data and model [data set]. CaltechDATA https://doi.org/10.22002/D1.20023 (2022).

Download references

Acknowledgements

Funding for this study was provided in part by NASA grant NNX16AQ81G awarded to M.P.L. We thank the Mars Science Laboratory mission for support and J. Dickson for technical assistance in Caltech’s Murray Lab for Planetary Visualization.

Author information

Authors and Affiliations

Authors

Contributions

B.T.C. and M.P.L. conceived the work and applied the methodology. All authors contributed to the analysis, writing, reviewing and editing.

Corresponding author

Correspondence to Benjamin T. Cardenas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Joel Davis and Nicolas Mangold for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Location maps of the seismic volume used in the experiment.

A: Box shows the location of seismic volume B-11-91-LA relative to the Gulf of Mexico, Earth. B: Zoom in to the box in A, showing the full extent of the 3D seismic survey (gray area) and the subsection used in the experiments (black area).

Extended Data Fig. 2 The distribution of Ω.

Histogram showing the distribution of the dimensionless sweetness of the full seismic volume.

Extended Data Fig. 3 Evolution of topographic relief in each experiment relative to the erosion at the central pixel.

The standard deviation of elevation generated during experiments 1 (99% wind-driven, 1% hillslope creep), 2 (75% wind-driven, 25% hillslope creep), and 3 (55% wind-driven, 45% hillslope creep). The experiments with less topographic variability evolved fewer fluvial ridges. Comparisons in Fig. 4 were performed when all experiments eroded the central pixel by 116 m, the value at the end of this plot.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Supplementary Video 1

Animation showing the evolution of the synthetic landscape during experiment 1.

Supplementary Video 2

Animation showing the evolution of the synthetic landscape during experiment 2.

Supplementary Video 3

Animation showing the evolution of the synthetic landscape during experiment 3.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardenas, B.T., Lamb, M.P. & Grotzinger, J.P. Martian landscapes of fluvial ridges carved from ancient sedimentary basin fill. Nat. Geosci. 15, 871–877 (2022). https://doi.org/10.1038/s41561-022-01058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01058-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing