Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genetic basis and evolution of red blood cell sickling in deer

Abstract

Crescent-shaped red blood cells, the hallmark of sickle-cell disease, present a striking departure from the biconcave disc shape normally found in mammals. Characterized by increased mechanical fragility, sickled cells promote haemolytic anaemia and vaso-occlusions and contribute directly to disease in humans. Remarkably, a similar sickle-shaped morphology has been observed in erythrocytes from several deer species, without obvious pathological consequences. The genetic basis of erythrocyte sickling in deer, however, remains unknown. Here, we determine the sequences of human β-globin orthologues in 15 deer species and use protein structural modelling to identify a sickling mechanism distinct from the human disease, coordinated by a derived valine (E22V) that is unique to sickling deer. Evidence for long-term maintenance of a trans-species sickling/non-sickling polymorphism suggests that sickling in deer is adaptive. Our results have implications for understanding the ecological regimes and molecular architectures that have promoted convergent evolution of sickling erythrocytes across vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mammalian adult β-globin peptide sequences in phylogenetic context.
Fig. 2: Structural basis for sicking of deer haemoglobin.
Fig. 3: Evidence for incomplete lineage sorting, gene conversion and a trans-species polymorphism in the evolutionary history of deer HBB A .

Similar content being viewed by others

References

  1. Ingram, V. M. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180, 326–328 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Harrington, D. J., Adachi, K. & Royer, W. E. Jr The high resolution crystal structure of deoxyhemoglobin S. J. Mol. Biol. 272, 398–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Wishner, B. C., Ward, K. B., Lattman, E. E. & Love, W. E. Crystal structure of sickle-cell deoxyhemoglobin at 5 Å resolution. J. Mol. Biol. 98, 179–194 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Sears, D. A. The morbidity of sickle cell trait. Am. J. Med. 64, 1021–1036 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Platt, O. S. et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 330, 1639–1644 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Piel, F. B. et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat. Commun. 1, 104 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herrick, J. B. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch. Int. Med. 5, 517–521 (1910).

    Article  Google Scholar 

  8. Gulliver, G. Observations on certain peculiarities of form in the blood corpuscles of the mammiferous animals. Lond. Edinb. Dubl. Philos. Mag. 17, 325–331 (1840).

    Article  Google Scholar 

  9. Undritz, E., Betke, K. & Lehmann, H. Sickling phenomenon in deer. Nature 187, 333–334 (1960).

    Article  Google Scholar 

  10. Hawkey, C. M. Comparative Mammalian Haematology (Heinemann Educational Books, 1975).

  11. Butcher, P. D. & Hawkey, C. M. Haemoglobins and erythrocyte sickling in the artiodactyla: a survey. Comp. Biochem. Physiol. A Physiol. 57, 391–398 (1977).

    Article  Google Scholar 

  12. Weber, Y. B. & Giacometti, L. Sickling phenomenon in the erythrocytes of wapiti (Cervus canadensis). J. Mammal. 53, 917–919 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Simpson, C. F. & Taylor, W. J. Ultrastructure of sickled deer erythrocytes. I. The typical crescent and holly leaf forms. Blood 43, 899–906 (1974).

    CAS  PubMed  Google Scholar 

  14. Schmidt, W. C. et al. The structure of sickling deer type III hemoglobin by molecular replacement. Acta Cryst. B Struct. Sci. Cryst. Eng. Mat. 33, 335–343 (1977).

    Article  Google Scholar 

  15. Pritchard, W. R., Malewitz, T. D. & Kitchen, H. Studies on the mechanism of sickling of deer erythrocytes. Exp. Mol. Pathol. 2, 173–182 (1963).

    Article  CAS  PubMed  Google Scholar 

  16. Kitchen, H., Easley, C. W., Putnam, F. W. & Taylor, W. J. Structural comparison of polymorphic hemoglobins of deer with those of sheep and other species. J. Biol. Chem. 243, 1204–1211 (1968).

    CAS  PubMed  Google Scholar 

  17. Seiffge, D. Haemorheological studies of the sickle cell phenomenon in European red deer (Cervus elaphus). Blut 47, 85–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Kitchen, H., Putnam, F. W. & Taylor, W. J. Hemoglobin polymorphism: its relation to sickling of erythrocytes in white-tailed deer. Science 144, 1237–1239 (1964).

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, W. J. & Easley, C. W. Sickling phenomena of deer. Ann. NY Acad. Sci. 241, 594–604 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Harris, M. J., Huisman, T. H. J. & Hayes, F. A. Geographic distribution of hemoglobin variants in the white-tailed deer. J. Mammal. 54, 270–274 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Harris, M. J., Wilson, J. B. & Huisman, T. H. J. Structural studies of hemoglobin α chains from Virginia white-tailed deer. Arch. Biochem. Biophys. 151, 540–548 (1972).

    Article  CAS  PubMed  Google Scholar 

  22. Parshall, C. J., Vainisi, S. J., Goldberg, M. F. & Wolf, E. D. In vivo erythrocyte sickling in the Japanese sika deer (Cervus nippon): methodology. Am. J. Vet. Res 36, 749–752 (1975).

    CAS  PubMed  Google Scholar 

  23. Whitten, C. F. Innocuous nature of the sickling (pseudosickling) phenomenon in deer. Br. J. Haematol. 13, 650–655 (1967).

    Article  CAS  PubMed  Google Scholar 

  24. Shimizu, K. et al. The primary sequence of the beta chain of Hb type III of the Virginia white-tailed deer (Odocoilus virginianus), a comparison with putative sequences of the beta chains from four additional deer hemoglobins, types II, IV, V, and VIII, and relationships between intermolecular contacts, primary sequence and sickling of deer hemoglobins. Hemoglobin 7, 15–45 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Kitchen, H. & Taylor, W. J. The sickling phenomenon of deer erythrocytes. Adv. Exp. Med. Biol. 28, 325–336 (1972).

    Article  CAS  PubMed  Google Scholar 

  26. Gaudry, M. J., Storz, J. F., Butts, G. T., Campbell, K. L. & Hoffmann, F. G. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals. Genome Biol. Evol. 6, 1219–1234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardison, R. C. Evolution of hemoglobin and its genes. Cold Spring Harb. Perspect. Med. 2, a011627 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Townes, T. M., Fitzgerald, M. C. & Lingrel, J. B. Triplication of a four-gene set during evolution of the goat beta-globin locus produced three genes now expressed differentially during development. Proc. Natl Acad. Sci. USA 81, 6589–6593 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schimenti, J. C. & Duncan, C. H. Structure and organization of the bovine beta-globin genes. Mol. Biol. Evol. 2, 514–525 (1985).

    CAS  PubMed  Google Scholar 

  30. Craig, J. E., Thein, S. L. & Rochette, J. Fetal hemoglobin levels in adults. Blood Rev. 8, 213–224 (1994).

    Article  PubMed  Google Scholar 

  31. Angeletti, M. et al. Different functional modulation by heterotropic ligands (2,3‐diphosphoglycerate and chlorides) of the two haemoglobins from fallow‐deer (Dama dama). Eur. J. Biochem. 268, 603–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Petruzzelli, R. et al. The primary structure of hemoglobin from reindeer (Rangifer tarandus tarandus) and its functional implications. Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 1076, 221–224 (1991).

    Article  CAS  Google Scholar 

  33. Adachi, K., Reddy, L. R. & Surrey, S. Role of hydrophobicity of phenylalanine beta 85 and leucine beta 88 in the acceptor pocket for valine beta 6 during hemoglobin S polymerization. J. Biol. Chem. 269, 31563–31566 (1994).

    CAS  PubMed  Google Scholar 

  34. Nagel, R. L. et al. Beta-chain contact sites in the haemoglobin S polymer. Nature 283, 832–834 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. Adachi, K., Konitzer, P. & Surrey, S. Role of gamma 87 Gln in the inhibition of hemoglobin S polymerization by hemoglobin F. J. Biol. Chem. 269, 9562–9567 (1994).

    CAS  PubMed  Google Scholar 

  36. Witkowska, H. E. et al. Sickle cell disease in a patient with sickle cell trait and compound heterozygosity for hemoglobin S and hemoglobin Quebec–Chori. N. Engl. J. Med. 325, 1150–1154 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Watson-Williams, E. J., Beale, D., Irvine, D. & Lehmann, H. A new haemoglobin, D Ibadan (beta-87 threonine → lysine), producing no sickle-cell haemoglobin D disease with haemoglobin S. Nature 205, 1273–1276 (1965).

    Article  CAS  PubMed  Google Scholar 

  38. Amma, E. L., Sproul, G. D., Wong, S. & Huisman, T. H. J. Mechanism of sickling in deer erythrocytes. Ann. NY Acad. Sci. 241, 605–613 (1974).

    Article  CAS  PubMed  Google Scholar 

  39. Girling, R. L., Schmidt, W. C. Jr, Houston, T. E., Amma, E. L. & Huisman, T. H. J. Molecular packing and intermolecular contacts of sickling deer type III hemoglobin. J. Mol. Biol. 131, 417–433 (1979).

    Article  CAS  PubMed  Google Scholar 

  40. Fernández, M. H. & Vrba, E. S. A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol. Rev. 80, 269–302 (2005).

    Article  Google Scholar 

  41. Taylor, W. J. & Simpson, C. F. Ultrastructure of sickled deer erythrocytes. II. The matchstick cell. Blood 43, 907–914 (1974).

    CAS  PubMed  Google Scholar 

  42. Butcher, P. D. & Hawkey, C. M. in The Comparative Pathology of Zoo Animals (eds Montali, R. J. & Migaki, G.) 633–641 (Smithsonian Institute, Washington, 1980).

  43. Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiuf, C., Zhao, K., Innan, H. & Nordborg, M. The probability and chromosomal extent of trans-specific polymorphism. Genetics 168, 2363–2372 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gao, Z., Przeworski, M. & Sella, G. Footprints of ancient‐balanced polymorphisms in genetic variation data from closely related species. Evolution 69, 431–446 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Baker, K. H. et al. Strong population structure in a species manipulated by humans since the Neolithic: the European fallow deer (Dama dama dama). Heredity 119, 16–26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryman, N., Baccus, R., Reuterwall, C. & Smith, M. H. Effective population size, generation interval, and potential loss of genetic variability in game species under different hunting regimes. Oikos 36, 257–266 (1981).

    Article  Google Scholar 

  48. Halligan, D. L., Oliver, F., Eyre-Walker, A., Harr, B. & Keightley, P. D. Evidence for pervasive adaptive protein evolution in wild mice. PLoS Genet. 6, e1000825 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shapiro, J. A. et al. Adaptive genic evolution in the Drosophila genomes. Proc. Natl Acad. Sci. USA 104, 2271–2276 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koldkjær, P., McDonald, M. D., Prior, I. & Berenbrink, M. Pronounced in vivo hemoglobin polymerization in red blood cells of Gulf toadfish: a general role for hemoglobin aggregation in vertebrate hemoparasite defense? Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1190–R1199 (2013).

    Article  PubMed  Google Scholar 

  51. Hawkey, C. M. & Jordan, P. Sickle-cell erythrocytes in the mongoose Herpestes sanguineus. Trans. R. Soc. Trop. Med. Hyg. 61, 180–181 (1967).

    Article  CAS  PubMed  Google Scholar 

  52. Butcher, P. D. & Hawkey, C. M. The nature of erythrocyte sickling in sheep. Comp. Biochem. Physiol. A Physiol. 64, 411–418 (1979).

    Article  Google Scholar 

  53. Evans, E. T. R. Sickling phenomenon in sheep. Nature 217, 74–75 (1968).

    Article  CAS  PubMed  Google Scholar 

  54. Tucker, E. M. Genetic variation in the sheep red blood cell. Biol. Rev. Camb. Philos. Soc. 46, 341–386 (1971).

    Article  CAS  PubMed  Google Scholar 

  55. Kijas, J. W. et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10, e1001258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244–247 (2017).

    CAS  PubMed  Google Scholar 

  57. Perry, B. D., Nichols, D. K. & Cullom, E. S. Babesia odocoilei Emerson and Wright, 1970 in white-tailed deer, Odocoileus virginianus (Zimmermann), in Virginia. J. Wildl. Dis. 21, 149–152 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Garnham, P. C. & Kuttler, K. L. A malaria parasite of the white-tailed deer (Odocoileus virginianus) and its relation with known species of Plasmodium in other ungulates. Proc. R. Soc. Lond. B Biol. Sci. 206, 395–402 (1980).

    Article  CAS  PubMed  Google Scholar 

  59. Martinsen, E. S. et al. Hidden in plain sight: cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Naidu, A., Fitak, R. R., Munguia Vega, A. & Culver, M. Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals. Mol. Ecol. Resour. 12, 191–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010).

    Article  Google Scholar 

  62. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Allen, J. M., Huang, D. I., Cronk, Q. C. & Johnson, K. P. aTRAM—automated target restricted assembly method: a fast method for assembling loci across divergent taxa from next-generation sequencing data. BMC Bioinformatics 16, 98 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Treangen, T. J., Sommer, D. D., Angly, F. E., Koren, S. & Pop, M. Next generation sequence assembly with AMOS. Curr. Protoc. Bioinformatics 11, 11.8 (2011).

    Google Scholar 

  69. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, S. et al. EMSAR: estimation of transcript abundance from RNA-Seq data by mappability-based segmentation and reclustering. BMC Bioinformatics 16, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eswar, N. et al. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 2, 2.9 (2007).

    Google Scholar 

  73. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Ludt, C. J., Schroeder, W., Rottmann, O. & Kuehn, R. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol. Phylogenet. Evol. 31, 1064–1083 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002).

    Article  PubMed  Google Scholar 

  80. Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Papadakis, M. N. & Patrinos, G. P. Contribution of gene conversion in the evolution of the human beta-like globin gene family. Hum. Genet. 104, 117–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Jeffreys, A. J. & May, C. A. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat. Genet. 36, 151–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Bosch, E., Hurles, M. E., Navarro, A. & Jobling, M. A. Dynamics of a human interparalog gene conversion hotspot. Genome Res. 14, 835–844 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Zoological Society of London Whipsnade Zoo (F. Molenaar), Bristol Zoological Society (S. Dow and K. Wyatt), the Royal Zoological Society of Scotland Highland Wildlife Park (J. Morse), the British Deer Society, the Penn State Deer Research Center (D. Wagner) and the Northeast Wildlife DNA Laboratory (N. Chinnici) for samples, the Medical Research Council London Institute of Medical Sciences Genomics Facility for DNA and RNA sequencing, B. N. Sacks, J. Mizzi and T. Brown for access to tule elk sequencing data, P. D. Butcher for discussions, and P. Sarkies, A. Brown and B. Lehner for comments on the manuscript. This work was supported by an Imperial College Interdisciplinary Cross-Campus Studentship to A.E., a Medical Research Council Career Development Award (MR/M02122X/1) to J.A.M., a Leverhulme Trust Fellowship to V.S., and Medical Research Council core funding and an Imperial College Junior Research Fellowship to T.W.

Author information

Authors and Affiliations

Authors

Contributions

A.E. performed the laboratory experiments and evolutionary analyses and contributed to the experimental design, data analysis and interpretation. L.T.B. and J.A.M. designed and performed the structural modelling and contributed to the data analysis and interpretation. V.S. contributed tissue samples. T.W. conceived the study, contributed to the experimental design, data analysis and interpretation, and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Tobias Warnecke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Table 1, Supplementary Discussion, Supplementary References.

Life Sciences Reporting Summary

Supplementary Table 2

Confirmation of species identities by mitochondrial CytB sequencing.

Supplementary Data 1

Alignment of cervid HBB A and HBB F gene sequences (coding exons and internal introns) determined in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esin, A., Bergendahl, L.T., Savolainen, V. et al. The genetic basis and evolution of red blood cell sickling in deer. Nat Ecol Evol 2, 367–376 (2018). https://doi.org/10.1038/s41559-017-0420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0420-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing