Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Social polymorphism is favoured by the co-evolution of dispersal with social behaviour

A Publisher Correction to this article was published on 11 December 2017

This article has been updated

Abstract

Dispersal determines gene flow among groups in a population and so plays a major role in many ecological and evolutionary processes. As gene flow shapes kin structure, dispersal is important to the evolution of social behaviours that influence reproduction within groups. Conversely, dispersal depends on kin structure and social behaviour. Dispersal and social behaviour therefore co-evolve, but the nature and consequences of this interplay are not well understood. Here, we show that it readily leads to the emergence of two social morphs: a sessile, benevolent morph expressed by individuals who tend to increase the reproduction of others within their group relative to their own; and a dispersive, self-serving morph expressed by individuals who tend to increase their own reproduction. This social polymorphism arises due to a positive linkage between the loci responsible for dispersal and social behaviour, leading to benevolent individuals preferentially interacting with relatives and self-serving individuals with non-relatives. We find that this linkage is favoured under a large spectrum of conditions, suggesting that associations between dispersal and other social traits should be common in nature. In line with this prediction, dispersers across a wide range of organisms have been reported to differ in their social tendencies from non-dispersers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Equilibrium dispersal.
Fig. 2: Disruptive selection when dispersal and social behaviour co-evolve.
Fig. 3: The emergence and maintenance of social morphs when dispersal and social behaviour co-evolve.
Fig. 4: The effect and evolution of genetic linkage between dispersal and social behaviour loci.
Fig. 5: Patterns of genetic differentiation.

Similar content being viewed by others

Change history

  • 11 December 2017

    Owing to a technical error, some text was missing in the originally published version of this Article. In the last paragraph of the Discussion section, the second sentence should have read “Yet, the selection that associates dispersal and social behaviour in our model will influence evolution under most ecological settings because it depends only on kin structure, which, due to limited dispersal and the spatial scale of social interactions, is ubiquitous in nature47.” This error has now been corrected in all versions of the Article.

References

  1. Clobert, J., Baguette, M. & Benton, T. G. Dispersal Ecology and Evolution (Oxford Univ. Press, Oxford, 2012).

  2. Ronce, O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).

    Article  Google Scholar 

  3. Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Frank, S. A. Foundations of Social Evolution (Princeton Univ. Press, Princeton, 1998).

  5. Hamilton, W. D. & May, R. M. Dispersal in stable habitats. Nature 269, 578–581 (1977).

    Article  Google Scholar 

  6. Cote, J., Clobert, J. & Fitze, P. S. Mother–offspring competition promotes colonization success. Proc. Natl Acad. Sci. USA 104, 9703–9708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoogland, J. L. Prairie dogs disperse when all close kin have disappeared. Science 339, 1205–1207 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Lehmann, L. & Perrin, N. Altruism, dispersal, and phenotype-matching kin recognition. Am. Nat. 159, 451–468 (2002).

    Article  PubMed  Google Scholar 

  9. Le Galliard, J. F., Ferrière, R. & Dieckmann, U. Adaptive evolution of social traits: origin, trajectories, and correlations of altruism and mobility. Am. Nat. 165, 206–224 (2005).

    Article  PubMed  Google Scholar 

  10. Hochberg, M. E., Rankin, D. J. & Taborsky, M. The coevolution of cooperation and dispersal in social groups and its implications for the emergence of multicellularity. BMC Evol. Biol. 8, 238 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. El Mouden, C. & Gardner, A. Nice natives and mean migrants: the evolution of dispersal-dependent social behaviour in viscous populations. J. Evol. Biol. 21, 1480–1491 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Powers, S. T., Penn, A. S. & Watson, R. A. The concurrent evolution of cooperation and the population structures that support it. Evolution 65, 1527–1543 (2011).

    Article  PubMed  Google Scholar 

  13. Purcell, J., Brelsford, A. & Avilés, L. Co-evolution between sociality and dispersal: the role of synergistic cooperative benefits. J. Theor. Biol. 312, 44–54 (2012).

    Article  PubMed  Google Scholar 

  14. Koella, J. C. The spatial spread of altruism versus the evolutionary response of egoists. Proc. R. Soc. Lond. B 267, 1979–1985 (2000).

    Article  CAS  Google Scholar 

  15. Parvinen, K. Joint evolution of altruistic cooperation and dispersal in a metapopulation of small local populations. Theor. Popul. Biol. 85, 12–19 (2013).

    Article  PubMed  Google Scholar 

  16. Mullon, C., Keller, L. & Lehmann, L. Evolutionary stability of jointly evolving traits in subdivided populations. Am. Nat. 188, 175–195 (2016).

    Article  PubMed  Google Scholar 

  17. Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    PubMed Central  Google Scholar 

  19. Rousset, F. Genetic Structure and Selection in Subdivided Populations (Princeton Univ. Press, Princeton, 2004).

    Google Scholar 

  20. Dugatkin, L. A. Principles of Animal Behavior 2nd edn (WW Norton, New York, 2008).

    Google Scholar 

  21. Dercole, F. & Rinaldi, S. Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and its Applications (Princeton Univ. Press, Princeton, 2008).

  22. Gandon, S. & Rousset, F. Evolution of stepping-stone dispersal rates. Proc. R. Soc. Lond. B 266, 2507–2513 (1999).

    Article  CAS  Google Scholar 

  23. Van Cleve, J. & Lehmann, L. Stochastic stability and the evolution of coordination in spatially structured populations. Theor. Popul. Biol. 89, 75–87 (2013).

    Article  PubMed  Google Scholar 

  24. Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity. 89, 329–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Leimar, O., Dall, S. R. X., Hammerstein, P. & McNamara, J. M. Genes as cues of relatedness and social evolution in heterogeneous environments. PLoS Comput. Biol. 12, e1005006 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Phil. Trans. R. Soc. B 365, 4065–4076 (2010).

    Article  CAS  Google Scholar 

  28. Wey, T. W., Spiegel, O. & Montiglio, P. O. Natal dispersal in a social landscape: considering individual behavioral phenotypes and social environment in dispersal ecology. Curr. Zool. 61, 543–556 (2015).

    Article  Google Scholar 

  29. Canestrelli, D., Bisconti, R. & Carere, C. Bolder takes all? The behavioral dimension of biogeography. Trends Ecol. Evol. 31, 35–43 (2016).

    Article  PubMed  Google Scholar 

  30. Jacob, S. et al. Cooperation-mediated plasticity in dispersal and colonization. Evolution 70, 2336–2345 (2016).

    Article  PubMed  Google Scholar 

  31. Myers, J. H. & Krebs, C. J. Genetic, behavioral, and reproductive attributes of dispersing field voles Microtus pennsylvanicus and Microtus ochrogaster. Ecol. Monogr. 41, 53–78 (1971).

    Article  CAS  Google Scholar 

  32. Rueffler, C., Van Dooren, T. J. M., Leimar, O. & Abrams, P. A. Disruptive selection and then what? Trends Ecol. Evol. 21, 238–245 (2006).

    Article  PubMed  Google Scholar 

  33. Duckworth, R. A. & Kruuk, L. E. B. Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution 63, 968–977 (2009).

    Article  PubMed  Google Scholar 

  34. Krackow, S. Motivational and heritable determinants of dispersal latency in wild male house mice (Mus musculus musculus). Ethology 109, 671–689 (2003).

    Article  Google Scholar 

  35. Rusu, A. S. & Krackow, S. Agonistic onset marks emotional changes and dispersal propensity in wild house mouse males (Mus domesticus). J. Comp. Psychol. 119, 58–66 (2005).

    Article  PubMed  Google Scholar 

  36. Tung, S., Mishra, A., Gogna, N., Sadiq, M. A. & Shreenidhi, P. M. Evolution of dispersal syndrome and its corresponding metabolomic changes. Preprint at https://www.biorxiv.org/content/early/2017/08/20/178715 (2017).

  37. Bize, P., Daniel, G., Viblanc, V. A., Martin, J. G. A. & Doligez, B. Negative phenotypic and genetic correlation between natal dispersal propensity and nest-defence behaviour in a wild bird. Biol. Lett. 13, 20170236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Corcobado, G., Rodrguez-Gironés, M. A., Moya-Laraño, J. & Avilés, L. Sociality level correlates with dispersal ability in spiders. Funct. Ecol. 26, 794–803 (2012).

    Article  Google Scholar 

  39. Riechert, S. E. & Jones, T. C. Phenotypic variation in the social behaviour of the spider Anelosimus studiosus along a latitudinal gradient. Anim. Behav. 75, 1893–1902 (2008).

    Article  Google Scholar 

  40. Pruitt, J. N. & Riechert, S. E. Sex matters: sexually dimorphic fitness consequences of a behavioural syndrome. Anim. Behav. 78, 175–181 (2009).

    Article  Google Scholar 

  41. Pruitt, J. N. et al. Population differences in behaviour are explained by shared within-population trait correlations. J. Evol. Biol. 23, 748–756 (2010).

    Article  PubMed  Google Scholar 

  42. Keller, L. et al. Ecology and evolution of social organization: insight from fire ants and other highly eusocial insects. Annu. Rev. Ecol. Syst. 26, 631–656 (1995).

    Article  Google Scholar 

  43. Purcell, J. & Chapuisat, M. Bidirectional shifts in colony queen number in a socially polymorphic ant population. Evolution 67, 1169–1180 (2013).

    Article  PubMed  Google Scholar 

  44. Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493, 664–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Purcell, J., Brelsford, A., Wurm, Y., Perrin, N. & Chapuisat, M. Convergent genetic architecture underlies social organization in ants. Curr. Biol. 24, 2728–2732 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Clutton-Brock, T. H. et al. Infanticide and expulsion of females in a cooperative mammal. Proc. R. Soc. Lond. B 265, 2291–2295 (1998).

    Article  CAS  Google Scholar 

  47. Bohonak, A. J. Dispersal, gene flow, and population structure. Theor. Popul. Biol. 74, 21–45 (1999).

    CAS  Google Scholar 

  48. Lehmann, L. & Keller, L. The evolution of cooperation and altruism–a general framework and a classification of models. J. Evol. Biol. 19, 1365–1376 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Bulmer, M. G. Sex ratio theory in geographically structured populations. Heredity 56, 69–73 (1986).

    Article  PubMed  Google Scholar 

  50. Lessard, S. Evolutionary stability: one concept, several meanings. Theor. Popul. Biol. 37, 159–170 (1990).

    Article  Google Scholar 

  51. Roze, D. & Rousset, F. Multilocus models in the infinite island model of population structure. Theor. Popul. Biol. 73, 529–542 (2008).

    Article  PubMed  Google Scholar 

  52. Leimar, O. The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching. Am. Nat. 165, 669–681 (2005).

    Article  PubMed  Google Scholar 

  53. Leimar, O. Multidimensional convergence stability. Evol. Ecol. Res. 11, 191–208 (2009).

    Google Scholar 

  54. Geritz, S. A. H., Metz, J. A. J. & Rueffler, C. Mutual invadability near evolutionarily singular strategies for multivariate traits, with special reference to the strongly convergence stable case. J. Math. Biol. 72, 1081–1099 (2016).

    Article  PubMed  Google Scholar 

  55. Ajar, E. Analysis of disruptive selection in subdivided populations. BMC Evol. Biol. 3, 22 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wakano, J. Y. & Lehmann, L. Evolutionary branching in deme-structured populations. J. Theor. Biol. 351, 83–95 (2014).

    Article  PubMed  Google Scholar 

  57. Phillips, P. C. & Arnold, S. J. Visualizing multivariate selection. Evolution 43, 1209–1222 (1989).

    Article  PubMed  Google Scholar 

  58. Bhatia, R. Positive Definite Matrices Vol. 53 (Princeton Univ. Press, Princeton, 2013).

    Google Scholar 

  59. Karlin, S. Equilibrium behaviour of population genetic models with non-random mating. J. Appl. Probab. 5, 231–313 (1968).

    Article  Google Scholar 

  60. Mathematica (Wolfram Research, Champaign, 2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.M., L.K. and L.L. conceptualized the study. C.M. designed the models and performed the analyses. C.M., L.K. and L.L. wrote the manuscript.

Corresponding authors

Correspondence to Charles Mullon or Laurent Keller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Supplementary Figures 1–3, Supplementary Table 1.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullon, C., Keller, L. & Lehmann, L. Social polymorphism is favoured by the co-evolution of dispersal with social behaviour. Nat Ecol Evol 2, 132–140 (2018). https://doi.org/10.1038/s41559-017-0397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0397-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing