Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling

Abstract

Heterobiaryl compounds that exhibit axial chirality are of increasing value and interest across several fields, but direct oxidative methods for their enantioselective synthesis remain elusive. Here we disclose that an iron catalyst in the presence of a chiral PyBOX ligand and an oxidant enables direct coupling between naphthols and indoles to yield atropisomeric heterobiaryl compounds with high levels of enantioselectivity. The reaction exhibits remarkable chemoselectivity and exclusively yields cross-coupled products without competing homocoupling. Mechanistic investigations enable us to postulate that an indole radical is generated in the reaction but that this is probably an off-cycle event, and that the reaction proceeds through formation of a chiral Fe-bound naphthoxy radical that is trapped by a nucleophilic indole. We envision that this simple, cheap and sustainable catalytic manifold will facilitate access to a range of heterobiaryl compounds and enable their application across the fields of materials science, medicinal chemistry and catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxidative cross-coupling reactions.
Fig. 2: Chemoselective derivatizations of enantioenriched biaryl 3o.
Fig. 3: Mechanistic investigations and proposed catalytic cycle.

Similar content being viewed by others

Data availability

All of the data (experimental procedures and characterization data) supporting the findings of this study are available within the article and its Supplementary Information files. Crystallographic data for compound 8 have been deposited with the Cambridge Crystallographic Data Centre under deposition number CCDC 2090406. These data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/.

References

  1. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loxq, P., Manoury, E., Poli, R., Deydier, E. & Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 308, 131–190 (2016).

    Article  CAS  Google Scholar 

  4. Wang, Y.-B. & Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 51, 534–547 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Ashenhurst, J. A. Intermolecular oxidative cross-coupling of arenes. Chem. Soc. Rev. 39, 540–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Yeung, C. S. & Dong, V. M. Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem. Rev. 111, 1215–1292 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Bansal, S., Shabade, A. B. & Punji, B. Advances in C(sp2)–H/C(sp2)–H oxidative coupling of (hetero)arenes using 3D transition metal catalysts. Adv. Synth. Catal. 363, 1998–2022 (2021).

    Article  CAS  Google Scholar 

  8. Nakajima, M., Miyoshi, I., Kanayama, K. & Hashimoto, S. Enantioselective synthesis of binaphthol derivatives by oxidative coupling of naphthol derivatives catalyzed by chiral diamine copper complexes. J. Org. Chem. 64, 2264–2271 (1999).

    Article  CAS  Google Scholar 

  9. Hewgley, J. B., Stahl, S. S. & Kozlowski, M. C. Mechanistic study of asymmetric oxidative biaryl coupling: evidence for self-processing of the copper catalyst to achieve control of oxidase vs oxygenase activity. J. Am. Chem. Soc. 130, 12232–12233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, X., Yang, J. & Kozlowski, M. C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes. Org. Lett. 3, 1137–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Egami, H. & Katsuki, T. Iron-catalyzed asymmetric aerobic oxidation: oxidative coupling of 2-naphthols. J. Am. Chem. Soc. 131, 6082–6083 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Guo, Q.-X. et al. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant. J. Am. Chem. Soc. 129, 13927–13938 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Tian, J.-M. et al. Copper-complex-catalyzed asymmetric aerobic oxidative cross-coupling of 2-naphthols: enantioselective synthesis of 3,3′-substituted C1-symmetric BINOLs. Angew. Chem. Int. Ed. 58, 11023–11027 (2019).

    Article  CAS  Google Scholar 

  14. Temma, T. & Habaue, S. Highly selective oxidative cross-coupling of 2-naphthol derivatives with chiral copper(i)–bisoxazoline catalysts. Tetrahedron Lett. 46, 5655–5657 (2005).

    Article  CAS  Google Scholar 

  15. Zhao, X.-J. et al. Enantioselective synthesis of 3,3′‐disubstituted 2‐amino‐2′‐hydroxy‐1,1′‐binaphthyls by copper‐catalyzed aerobic oxidative cross‐coupling. Angew. Chem. Int. Ed. 60, 7061–7065 (2021).

    Article  CAS  Google Scholar 

  16. Hayashi, H., Ueno, T., Kim, C. & Uchida, T. Ruthenium-catalyzed cross-selective asymmetric oxidative coupling of arenols. Org. Lett. 22, 1469–1474 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Egami, H., Matsumoto, K., Oguma, T., Kunisu, T. & Katsuki, T. Enantioenriched synthesis of C1-symmetric BINOLS: iron-catalyzed cross-coupling of 2-naphthols and some mechanistic insight. J. Am. Chem. Soc. 132, 13633–13635 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Narute, S., Parnes, R., Toste, F. D. & Pappo, D. Enantioselective oxidative homocoupling and cross-coupling of 2‐naphthols catalyzed by chiral iron phosphate complexes. J. Am. Chem. Soc. 138, 16553–16560 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Dyadyuk, A. et al. A chiral iron disulfonate catalyst for the enantioselective synthesis of 2-amino-2′hydroxy-1,1-binaphthyls (NOBINs). J. Am. Chem. Soc. 144, 3676–3684 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Li, T.-Z., Liu, S.-J., Tan, W. & Shi, F. Catalytic asymmetric construction of axially chiral indole‐based frameworks: an emerging area. Chem. Eur. J. 26, 15779–15792 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, H.-H. et al. Design and enantioselective construction of axially chiral naphthyl-indole skeletons. Angew. Chem. Int. Ed. 56, 116–121 (2017).

    Article  CAS  Google Scholar 

  22. He, C., Hou, M., Zhu, Z. & Gu, Z. Enantioselective synthesis of indole-based biaryl atropisomers via palladium-catalyzed dynamic kinetic intramolecular C–H cyclization. ACS Catal. 7, 5316–5320 (2017).

    Article  CAS  Google Scholar 

  23. Qi, L.-W., Mao, J.-H., Zhang, J. & Tan, B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat. Chem. 10, 58–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, F., Chen, K.-W., Wu, P., Zhang, Y. C. & Shi, F. A strategy for synthesizing axially chiral naphthyl‐indoles: catalytic asymmetric addition reactions of racemic substrates. Angew. Chem. Int. Ed. 58, 15104–15110 (2019).

    Article  CAS  Google Scholar 

  25. Burgett, A. W., Li, Q., Wei, Q. & Harran, P. G. A concise and flexible total synthesis of (−)‐diazonamide A. Angew. Chem. Int. Ed. 42, 4961–4966 (2003).

    Article  CAS  Google Scholar 

  26. Nicolaou, K. E., Dalby, S. M., Li, S., Suzuki, T. & Chen, D. Y. K. Total synthesis of (+)‐haplophytine. Angew. Chem. Int. Ed. 48, 7616–7620 (2009).

    Article  CAS  Google Scholar 

  27. Kita, Y. et al. Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. Generation of cation radicals as reactive intermediates. J. Am. Chem. Soc. 116, 3684–3691 (1994).

    Article  CAS  Google Scholar 

  28. Tomakinian, T., Guillot, R., Kouklovsky, C. & Vincent, G. Direct oxidative coupling of N‐acetyl indoles and phenols for the synthesis of benzofuroindolines related to phalarine. Angew. Chem. Int. Ed. 53, 11881–11885 (2014).

    Article  CAS  Google Scholar 

  29. Liu, K., Tang, S., Huang, P. & Lei, A. External oxidant-free electrooxidative [3 + 2] annulation between phenol and indole derivatives. Nat. Commun. 8, 775 (2017).

  30. Evans, D. A., Dinsmore, C. J., Evrard, D. A. & DeVries, K. M. Oxidative coupling of arylglycine-containing peptides. A biomimetic approach to the synthesis of the macrocyclic actinoidinic-containing vancomycin subunit. J. Am. Chem. Soc. 115, 6426–6427 (1993).

    Article  CAS  Google Scholar 

  31. Libman, A. et al. Synthetic and predictive approach to unsymmetrical biphenols by iron-catalyzed chelated radical–anion oxidative coupling. J. Am. Chem. Soc. 137, 11453–11460 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Gaster, E. et al. Significant enhancement in the efficiency and selectivity of iron-catalyzed oxidative cross-coupling of phenols by fluoroalcohols. Angew. Chem. Int. Ed. 54, 4198–4202 (2015).

    Article  CAS  Google Scholar 

  33. LaPlante, S. R., Edwards, P. J., Fader, L. D., Jakalian, A. & Hucke, O. Revealing atropisomer axial chirality in drug discovery. ChemMedChem 6, 505–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Hovorka, M., Gunterova, J. & Závada, J. Highly selective cross-coupling of substituted naphthols: a convenient approach to unsymmetrical 1,1′-binaphthalene-2,2′-diols. Tetrahedron Lett. 31, 413–416 (1990).

    Article  CAS  Google Scholar 

  35. Li, X., Hewgley, J. B., Mulrooney, C. A., Yang, J. & Kozlowski, M. C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes: efficient formation of chiral functionalized BINOL derivatives. J. Org. Chem. 68, 5500–5511 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Yan, P. et al. Lewis acid-assisted oxidative cross-coupling of 2-naphthol derivatives with copper catalysts. Tetrahedron 64, 4325–4331 (2008).

    Article  CAS  Google Scholar 

  37. Nishiyama, H. et al. Chiral and C2-symmetrical bis(oxazolinylpyridine)rhodium(iii) complexes: effective catalysts for asymmetric hydrosilylation of ketones. Organometallics 8, 846–848 (1989).

    Article  CAS  Google Scholar 

  38. Jiang, F. et al. Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with Morita–Baylis–Hillman carbonates. J. Org. Chem. 83, 10060–10069 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. He, T. et al. Chiral naphthyl-C2-indole as scaffold for phosphine organocatalysis: application in asymmetric formal [4 + 2] cycloaddition reactions. Org. Lett. 22, 6966–6971 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. McDonald, A. R. & Que, L. Jr High-valent nonheme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord. Chem. Rev. 257, 414–428 (2013).

    Article  CAS  Google Scholar 

  42. Vershinin, V., Forkosh, H., Ben-Lulu, M., Libman, A. & Pappo, D. Mechanistic insights into the FeCl3-catalyzed oxidative cross-coupling of phenols with 2-aminonaphthalenes. J. Org. Chem. 86, 79–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Niu, T. & Zhang, Y. Iron-catalyzed oxidative homo-coupling of indoles via C–H cleavage. Tetrahedron Lett. 51, 6847–6851 (2010).

    Article  CAS  Google Scholar 

  44. Nagaraju, K. & Ma, D. Oxidative coupling strategies for the synthesis of indole alkaloids. Chem. Soc. Rev. 47, 8018–8029 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Shalit, H., Dyadyuk, A. & Pappo, D. Selective oxidative phenol coupling by iron catalysis. J. Org. Chem. 84, 1677–1686 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Lakhdar, S. et al. Nucleophilic reactivities of indoles. J. Org. Chem. 71, 9088–9095 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Richter, J. M. et al. Scope and mechanism of the direct indole and pyrrole couplings adjacent to carbonyl compounds: total synthesis of acremoauxin A and oxazinin 3. J. Am. Chem. Soc. 129, 12857–12869 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Groves, J. T. Enzymatic C–H bond activation: using push to get pull. Nat. Chem. 6, 89–91 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Poli, R.Radical coordination chemistry and its relevance to metal-mediated radical polymerization. Eur. J. Inorg. Chem. 2011, 1513–1530 (2011).

    Article  Google Scholar 

  50. Kim, D., Rahaman, S. M. W., Mercado, B. Q., Poli, R. & Holland, P. L. Roles of iron complexes in catalytic radical alkene cross-coupling: a computational and mechanistic study. J. Am. Chem. Soc. 141, 7473–7485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2019).

    Article  Google Scholar 

  52. Matsumoto, K., Egami, H., Oguma, T. & Katsuki, T. What factors influence the catalytic activity of iron–salan complexes for aerobic oxidative coupling of 2-naphthols? Chem. Commun. 48, 5823–5825 (2012).

    Article  CAS  Google Scholar 

  53. Encinas, M. V., Lissi, E. A., Majmud, C. & Olea, A. F. Reactivity of tert-butoxyl radicals towards substituted indole derivatives. Int. J. Chem. Kinet. 23, 761–766 (1991).

    Article  CAS  Google Scholar 

  54. Buxton, G. V., Langan, J. R. & Smith, J. R. L. Aromatic hydroxylation. 8. A radiation chemical study of the oxidation of hydroxycyclohexadienyl radicals. J. Phys. Chem. 90, 6309–6631 (1986).

    Article  CAS  Google Scholar 

  55. Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Engineering and Physical Sciences Research Council (EPSRC) has provided financial support for a postdoctoral fellowship (to X.L.; EP/R005826/1) and studentships (to R.R.S. and M.J.H.K.) via the Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1). The Centre for Advanced Electron Spin Resonance is supported by the EPSRC (EP/L011972/1 and EP/V036408/1) and Oxford University Press John Fell Fund (0007019). We are grateful to O. Smith for X-ray crystallographic analysis and D. Pappo (Ben-Gurion University) and M. O’Donnell (Vertex) for helpful discussions. A CC-BY licence is applied to the author accepted manuscript arising from this submission, in accordance with EPSRC’s open access conditions.

Author information

Authors and Affiliations

Authors

Contributions

R.R.S., X.L., M.J.H.K. and M.D.S. conceived of and designed the study. R.R.S., X.L. and M.J.H.K. performed the synthetic experiments and analysed the data for all compounds. W.M. performed the electron spin resonance study. R.R.S., X.L., W.M. and M.D.S. co-wrote the paper.

Corresponding author

Correspondence to Martin D. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Feng Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–16 and Figs. 1–11, synthetic procedures and characterization data for all compounds, data for mechanistic investigation (EPR, mass spectrometry and radical trapping data), a summary of the X-ray data, and pictorial NMR spectra (1H and 13C) for all compounds.

Supplementary Data 1

Crystallographic data for compound 8 (CCDC reference 2090406).

Supplementary Data 2

Crystallographic data (structure factors) for compound 8 (CCDC reference 2090406).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surgenor, R.R., Liu, X., Keenlyside, M.J.H. et al. Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling. Nat. Chem. 15, 357–365 (2023). https://doi.org/10.1038/s41557-022-01095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01095-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing