Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates

Abstract

Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rational design of SNCs using a polymer library for logic computation and sequential drug release.
Fig. 2: Construction of the stimuli-responsive polymer library.
Fig. 3: Biocomputation using logic-gated nanocarriers.
Fig. 4: pH-activated targeting, sequential release and logic computation in vitro.
Fig. 5: Enhanced antitumour efficacy in vivo using combinatorial treatment.

Similar content being viewed by others

Data availability

All the datasets generated and/or analysed during this study and supporting the findings described are available within the article and its Supplementary Information or from the corresponding author upon reasonable request.

References

  1. Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. McKinney, E. F. & Smith, K. G. C. Metabolic exhaustion in infection, cancer and autoimmunity. Nat. Immunol. 19, 213–221 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Khan, A. T., Dobson, R. J. B., Sattlecker, M. & Kiddle, S. J. Alzheimer’s disease: are blood and brain markers related? A systematic review. Ann. Clin. Transl. Neurol. 3, 455–462 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yu, T. C. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nagarsheth, N., Wicha, M. S. & Zou, W. P. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. F. & Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2, 14 (2017).

    Article  CAS  Google Scholar 

  8. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 1, 16075 (2016).

    Article  CAS  Google Scholar 

  9. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Mace, T. A. et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67, 320–332 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J., Green, A. A., Yan, H. & Fan, C. H. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. You, M. X., Zhu, G. Z., Chen, T., Donovan, M. J. & Tan, W. H. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc. 137, 667–674 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Peng, R. Z. et al. Engineering a 3D DNA-logic gate nanomachine for bispecific recognition and computing on target cell surfaces. J. Am. Chem. Soc. 140, 9793–9796 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pugh, G. C., Burns, J. R. & Howorka, S. Comparing proteins and nucleic acids for next-generation biomolecular engineering. Nat. Rev. Chem. 2, 113–130 (2018).

    Article  CAS  Google Scholar 

  16. Sedlmayer, F., Aubel, D. & Fussenegger, M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat. Biomed. Eng. 2, 399–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Chatterjee, G., Dalchau, N., Muscat, R. A., Phillips, A. & Seelig, G. A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12, 920–927 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Green, A. A. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esabahy, M., Heo, G. S., Lim, S. M., Sun, G. R. & Wooley, K. L. Polymeric nanostructures for imaging and therapy. Chem. Rev. 115, 10967–11011 (2015).

    Article  CAS  Google Scholar 

  21. Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y. et al. Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew. Chem. Int. Ed. 52, 6435–6439 (2013).

    Article  CAS  Google Scholar 

  23. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Fu, X., Hosta-Rigau, L., Chandrawati, R. & Cui, J. Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery. Chem 4, 2084–2107 (2018).

    Article  CAS  Google Scholar 

  25. Ikeda, M. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat. Chem. 6, 511–518 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, G. et al. Hyperbranched self-immolative polymers (hSIPs) for programmed payload delivery and ultrasensitive detection. J. Am. Chem. Soc. 137, 11645–11655 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Lei, E. K. & Kelley, S. O. Delivery and release of small-molecule probes in mitochondria using traceless linkers. J. Am. Chem. Soc. 139, 9455–9458 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Roth, M. E., Green, O., Gnaim, S. & Shabat, D. Dendritic, oligomeric, and polymeric self-immolative molecular amplification. Chem. Rev. 116, 1309–1352 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Staben, L. R. et al. Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates. Nat. Chem. 8, 1112–1119 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Saatci, Ö. et al. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene 37, 2251–2269 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, J., Ivanov, A. I., Fisher, P. B. & Fu, Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. eLife 5, e10734 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Alouane, A., Labruère, R., Saux, T. L., Schmidt, F. & Jullien, L. Self-immolative spacers: kinetic aspects, structure–property relationships, and applications. Angew. Chem. Int. Ed. 54, 7492–7509 (2015).

    Article  CAS  Google Scholar 

  35. Zhang, D. et al. Linker immolation determines cell killing activity of disulfide-linked pyrrolobenzodiazepine antibody–drug conjugates. ACS Med. Chem. Lett. 7, 988–993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yueqin, Z. et al. Esterase-sensitive prodrugs with tunable release rates and direct generation of hydrogen sulfide. Angew. Chem. Int. Ed. 55, 4514–4518 (2016).

    Article  CAS  Google Scholar 

  37. Wu, S. & Fu, L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol. Cancer 17, 25 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fu, Z. & Wen, D. The emerging role of polo-like kinase 1 in epithelial-mesenchymal transition and tumor metastasis. Cancers 9, 131 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  39. Narvaez, A. J. et al. Modulating protein-protein interactions of the mitotic polo-like kinases to target mutant KRAS. Cell Chem. Biol. 24, 1017–1028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yun, J. et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350, 1391–1396 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, B. W., Chen, Y. & Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119, 4881–4985 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Sullivan, L. B., Gui, D. Y. & Heiden, M. G. V. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat. Rev. Cancer 16, 680–693 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Vander-Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, H. et al. The landscape of cancer cell line metabolism. Nat. Med. 25, 850–860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang, Z. F. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Aron, A. T. et al. In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection. Proc. Natl Acad. Sci. USA 114, 12669–12674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bruemmer, K. J., Green, O., Su, T. A., Shabat, D. & Chang, C. J. Chemiluminescent probes for activity-based sensing of formaldehyde released from folate degradation in living mice. Angew. Chem. Int. Ed. 57, 7508–7512 (2018).

    Article  CAS  Google Scholar 

  52. Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Steeg, P. S. Targeting metastasis. Nat. Rev. Cancer 16, 201–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gotwals, P. et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 17, 286–301 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Spring, B. Q. et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 11, 378–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fan, W., Yung, B., Huang, P. & Chen, X. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 117, 13566–13638 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Z. H. et al. Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat. Biotechnol. 35, 543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21605118, 21974105, 11522219, 11972280, 11532009, 21427807, 21834004, 21827811 and 61527806), the China Postdoctoral Science Foundation (2015M580829 and 2017T100735), the Postdoctoral Science Foundation of Shaanxi Province (2016BSHTBSHTDZZ01), the Natural Science Foundation of Shaanxi Province (2018JQ2001), the Open Funds of SKLACLS from Nanjing University (1508) and the Fundamental Research Funds for the Central Universities (xjj2015081). Z.P. also acknowledges financial support from the program of China Scholarships Council. J.Z. thanks the support from Excellent Research Program of Nanjing University (ZYJH004). Correspondence and requests for materials should be addressed to W.T., F.X. or J.-J.Z.

Author information

Authors and Affiliations

Authors

Contributions

P.Z., J.-J.Z., F.X. and W.T. conceived the project, analysed the data and discussed the writing of the paper. P.Z., D.G., K.A., Q.S., Y.Z., X.C., X.D. and J.L. designed the monomers and performed the organic synthesis experiments. P.Z., K.A., C.W., X.P., T.L., C.C., Y.L. and X.H. performed the in vitro and in vivo experiments and analysed the data. T.Y. analysed the gene expression levels from the CCLE and TCGA databases. P.Z., W.T. and F.X. wrote the manuscript. P.Z., D.G. and K.A. contributed equally to this work.

Corresponding authors

Correspondence to Jun-Jie Zhu, Feng Xu or Weihong Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods, additional discussion, Supplementary Figs. 1–20, Tables 1–4, profiles of gene expression, and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Gao, D., An, K. et al. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat. Chem. 12, 381–390 (2020). https://doi.org/10.1038/s41557-020-0426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0426-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research