Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ or in vitro

Abstract

Muscle loss and impairment resulting from traumatic injury can be alleviated by therapies using muscle stem cells. However, collecting sufficient numbers of autologous myogenic stem cells and expanding them efficiently has been challenging. Here we show that myogenic stem cells (predominantly Pax7+ cells)—which were selectively expanded from readily obtainable dermal fibroblasts or skeletal muscle stem cells using a specific cocktail of small molecules and transplanted into muscle injuries in adult, aged or dystrophic mice—led to functional muscle regeneration in the three animal models. We also show that sustained release of the small-molecule cocktail in situ through polymer nanoparticles led to muscle repair by inducing robust activation and expansion of resident satellite cells. Chemically induced stem cell expansion in vitro and in situ may prove to be advantageous for stem cell therapies that aim to regenerate skeletal muscle and other tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A small-molecule cocktail induces myogenic cells from dermal cells.
Fig. 2: Characterization of CiMCs.
Fig. 3: Specific upregulation of myogenic gene expression in CiMCs.
Fig. 4: Enriched dermal myogenic cells contribute to chemical-expanded CiMCs.
Fig. 5: The dermal Pax7+ subpopulation is the main contributor to the expanded CiMCs.
Fig. 6: In vivo engraftment of CiMCs promotes muscle regeneration.
Fig. 7: Drug-loaded nanoparticles promote muscle regeneration.
Fig. 8: Drug-loaded nanoparticles enhance muscle repair by promoting in situ satellite cell expansion.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. Data for the microarray and scRNA-seq have been deposited in the NCBI Gene Expression Omnibus under accession numbers GSE158690 and GSE158691, respectively. All data generated in this study, including source data and the data used to make the figures, are available at Figshare (https://doi.org/10.6084/m9.figshare.13049690.v1).

Code availability

The custom code used is available at GitHub (https://github.com/junrensia/Jun_et_al_Nature_BME_2020).

References

  1. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sicari, B. M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra58 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Quarta, M. et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat. Commun. 8, 15613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schworer, S. et al. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature 540, 428–432 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Chakkalakal, J. V., Jones, K. M., Basson, M. A. & Brack, A. S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mercuri, E. & Muntoni, F. Muscular dystrophies. Lancet 381, 845–860 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134, 37–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Qiu, Z. et al. Skeletal myogenic potential of mouse skin-derived precursors. Stem Cells Dev. 19, 259–268 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Galli, R. et al. Skeletal myogenic potential of human and mouse neural stem cells. Nat. Neurosci. 3, 986–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Li, W. L., Li, K., Wei, W. G. & Ding, S. Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13, 270–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zismanov, V. et al. Phosphorylation of eIF2α is a translational control mechanism regulating muscle stem cell quiescence and self-renewal. Cell Stem Cell 18, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, C. et al. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155, 909–921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernet, J. D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu, X. et al. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res. 25, 655–673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hou, P. P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Constantinides, P. G., Jones, P. A. & Gevers, W. Functional striated-muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267, 364–366 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, J. et al. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat. Genet. 45, 1504–1509 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Esteban, M. A. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71–79 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Acuna, L. et al. Morphometric and histopathologic changes in skeletal muscle induced for injectable plga microparticles. Int. J. Morphol. 29, 403–408 (2011).

    Article  Google Scholar 

  28. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Amoasii, L. et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362, 86–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blau, H. M., Cosgrove, B. D. & Ho, A. T. V. The central role of muscle stem cells in regenerative failure with aging. Nat. Med. 21, 854–862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Boonen, K. J. & Post, M. J. The muscle stem cell niche: regulation of satellite cells during regeneration. Tissue Eng. B 14, 419–431 (2008).

    Article  Google Scholar 

  33. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Gang, E. J. et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22, 617–624 (2004).

    Article  PubMed  Google Scholar 

  35. Sampaolesi, M. et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Chal, J. et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33, 962–969 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Hicks, M. R. et al. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs. Nat. Cell Biol. 20, 46–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Young, C. S. et al. A single CRISPR–Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 18, 533–540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oh, J., Lee, Y. D. & Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat. Med. 20, 870–880 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, W. X. et al. Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17, 204–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Fu, Y. B. et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 25, 1013–1024 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bar-Nur, O. et al. Direct reprogramming of mouse fibroblasts into functional skeletal muscle progenitors. Stem Cell Rep. 10, 1505–1521 (2018).

    Article  CAS  Google Scholar 

  43. Zhao, Y. et al. A XEN-like state bridges somatic cells to pluripotency during chemical reprogramming. Cell 163, 1678–1691 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Singhal, P. K. et al. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity. Proc. Natl Acad. Sci. USA 113, 122–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Almada, A. E. & Wagers, A. J. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat. Rev. Mol. Cell Biol. 17, 267–279 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cosgrove, B. D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ichida, J. K. et al. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5, 491–503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Serrano, A. L. & Munoz-Canoves, P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp. Cell Res. 316, 3050–3058 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Tidball, J. G. & Wehling-Henricks, M. Shifts in macrophage cytokine production drive muscle fibrosis. Nat. Med. 21, 665–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Juhas, M. et al. Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration. Nat. Biomed. Eng. 2, 942–954 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Raimondo, T. M. & Mooney, D. J. Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proc. Natl Acad. Sci. USA 115, 10648–10653 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Welc, S. S. et al. Targeting a therapeutic LIF transgene to muscle via the immune system ameliorates muscular dystrophy. Nat. Commun. 10, 2788 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raker, V. K., Becker, C. & Steinbrink, K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front. Immunol. 7, 123 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lichti, U., Anders, J. & Yuspa, S. H. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat. Protoc. 3, 799–810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gharaibeh, B. et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat. Protoc. 3, 1501–1509 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Seluanov, A., Vaidya, A. & Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. J. Vis. Exp. 44, 2033 (2010).

    Google Scholar 

  58. Liu, L., Cheung, T. H., Charville, G. W. & Rando, T. A. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat. Protoc. 10, 1612–1624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fang, J. et al. Injectable drug-releasing microporous annealed particle scaffolds for treating myocardial infarction. Adv. Funct. Mater. 30, 2004307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, C. W. et al. The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci. Rep. 7, 17401 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bonetto, A., Andersson, D. C. & Waning, D. L. Assessment of muscle mass and strength in mice. Bonekey Rep. 4, 732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Conboy and V. Rezek for their technical assistance with the in vivo cell transplantation study and K. Heydari for his assistance with FACS. This work was supported in part by grants from UCLA Broad Stem Cell Research Center, the National Institute of Health (EB012240 HL121450 and R56DE029157 to S.L.), a fellowship from the Agency for Science, Technology and Research (to J. Sia), a fellowship from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH under the Ruth L. Kirschstein National Research Service Award (T32AR059033 (to J. Soto) and the Medical Scientist Training Program at UCLA (NIH T32 GM008042 to L.K.L.). SEM was performed at the California NanoSystems Institute (CNSI) Electron Imaging Center for NanoMachines (EICN) Shared Resource Facility at UCLA. Confocal laser scanning microscopy was performed at the California NanoSystems Institute (CNSI) Advanced Light Microscopy/Spectroscopy Shared Resource Facility at UCLA. FACS was performed at the UCLA Jonsson Comprehensive Cancer Center (JCCC) and Center for AIDS Research Flow Cytometry Core Facility that is supported by National Institutes of Health awards P30 CA016042 and 5P30 AI028697, and by the JCCC, the UCLA AIDS Institute, the David Geffen School of Medicine at UCLA, the UCLA Chancellor’s Office and the UCLA Vice Chancellor’s Office of Research. Single-cell RNA sequencing was conducted at the UCLA Technology Center for Genomics and Bioinformatics.

Author information

Authors and Affiliations

Authors

Contributions

J.F., J. Sia, J.G.T. and S.L. designed the project and experiments and wrote the manuscript. J.F., J. Sia and P.W. performed the myogenic induction with small molecules. J.F. performed the immunofluorescence staining, histological analysis, drug delivery system preparation and animal studies. J.F. and J. Soto performed flow cytometry analysis. J. Sia and R.S. performed microarray analysis and gene expression analysis. J.F., J. Sia and J. Soto performed single-cell sequencing and data analysis. J.F. and K.F.F. performed HPLC analysis. J.F., L.K.L. and Y.-Y.H. performed electrophysiological analysis. All of the authors revised the manuscript and added comments.

Corresponding author

Correspondence to Song Li.

Ethics declarations

Competing interests

The innovation related to this study has been filed for patent application by J.F., S.L. and J. Sia. (US Serial No. 30435411.2020).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Table 1, and captions for Supplementary Videos 1–4.

Reporting Summary

Supplementary Video 1

Spontaneous beating after treatment with FR medium for 4 d.

Supplementary Video 2

Spontaneous beating after treatment with FR medium for 8 d.

Supplementary Video 3

Spontaneous beating after treatment with FR medium for 14 d.

Supplementary Video 4

Spontaneous beating after treatment with FR medium for 16 d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Sia, J., Soto, J. et al. Skeletal muscle regeneration via the chemical induction and expansion of myogenic stem cells in situ or in vitro. Nat Biomed Eng 5, 864–879 (2021). https://doi.org/10.1038/s41551-021-00696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00696-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research