Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multimodal in vivo brain electrophysiology with integrated glass microelectrodes

Abstract

Electrophysiology is the most used approach for the collection of functional data in basic and translational neuroscience, but it is typically limited to either intracellular or extracellular recordings. The integration of multiple physiological modalities for the routine acquisition of multimodal data with microelectrodes could be useful for biomedical applications, yet this has been challenging owing to incompatibilities of fabrication methods. Here, we present a suite of glass pipettes with integrated microelectrodes for the simultaneous acquisition of multimodal intracellular and extracellular information in vivo, electrochemistry assessments, and optogenetic perturbations of neural activity. We used the integrated devices to acquire multimodal signals from the CA1 region of the hippocampus in mice and rats, and show that these data can serve as ground-truth validation for the performance of spike-sorting algorithms. The microdevices are applicable for basic and translational neurobiology, and for the development of next-generation brain–machine interfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design, fabrication and assembly of the Patch-Tritrode device.
Fig. 2: Multimodal electrophysiology with the Patch-Tritrode device.
Fig. 3: Design and fabrication of Patch-Silvertrode device.
Fig. 4: Multimodal electrophysiology and optogenetics with the Patch-Silvertrode.
Fig. 5: Design and fabrication of the Patch-Carbontrode.
Fig. 6: Multimodal electrophysiology and electrochemistry with the Patch-Carbontrode.
Fig. 7: Extracellular spike-sorting validation with intracellular ground-truth data.
Fig. 8: Bursts are the principal source of false-negative spike-sorting errors.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary information. The raw data acquired in this study are available from the corresponding author on reasonable request.

Code availability

The custom routines for Matlab used in this work are available from the corresponding author.

References

  1. Eccles, J. C. The synapse: from electrical to chemical transmission. Ann. Rev. Neurosci. 5, 325–339 (1982).

    Article  CAS  Google Scholar 

  2. Magee, J. C. Dendritic integration of excitatory synaptic input. Nat. Rev. Neurosci. 1, 181–190 (2000).

    Article  CAS  Google Scholar 

  3. Schmidt-Hieber, C. & Nolan, M. F. Synaptic integrative mechanisms for spatial cognition. Nat. Neurosci. 20, 1483–1492 (2017).

    Article  CAS  Google Scholar 

  4. Harvey, C. D., Collman, F., Dombeck, D. A. & Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946 (2009).

    Article  CAS  Google Scholar 

  5. Lee, D., Lin, B. J. & Lee, A. K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).

    Article  CAS  Google Scholar 

  6. Long, M. A., Jin, D. Z. & Fee, M. S. Support for a synaptic chain model of neuronal sequence generation. Nature 468, 394–399 (2010).

    Article  CAS  Google Scholar 

  7. Tan, A. Y., Chen, Y., Scholl, B., Seidemann, E. & Priebe, N. J. Sensory stimulation shifts visual cortex from synchronous to asynchronous states. Nature 509, 226–229 (2014).

    Article  CAS  Google Scholar 

  8. Petersen, C. C. H. Whole-cell recording of neuronal membrane potential during behavior. Neuron 95, 1266–1281 (2017).

    Article  CAS  Google Scholar 

  9. Poulet, J. F. A. & Petersen, C. C. H. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–U836 (2008).

    Article  CAS  Google Scholar 

  10. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    Article  CAS  Google Scholar 

  11. Buzsaki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Article  CAS  Google Scholar 

  12. Einevoll, G. T., Kayser, C., Logothetis, N. K. & Panzeri, S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785 (2013).

    Article  CAS  Google Scholar 

  13. Mazzoni, A., Logothetis, N. K. & Panzeri, S. in Principles of Neural Coding (eds Quiroga, R. D. & Panzeri, S.) 411–429 (CRC Press, 2013).

  14. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446–451 (2004).

    Article  Google Scholar 

  15. Lewicki, M. S. A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9, R53–R78 (1998).

    Article  CAS  Google Scholar 

  16. Anastassiou, C. A., Perin, R., Buzsaki, G., Markram, H. & Koch, C. Cell type- and activity-dependent extracellular correlates of intracellular spiking. J. Neurophysiol. 114, 608–623 (2015).

    Article  Google Scholar 

  17. Chorev, E. & Brecht, M. In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons. J. Neurophysiol 108, 1584–1593 (2012).

    Article  Google Scholar 

  18. Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H. & Buzsaki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414 (2000).

    Article  CAS  Google Scholar 

  19. Henze, D. A. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390–400 (2000).

    Article  CAS  Google Scholar 

  20. Andrásfalvy, B. K. et al. Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology. Nat. Methods 11, 1237–1241 (2014).

    Article  Google Scholar 

  21. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  CAS  Google Scholar 

  22. LeChasseur, Y. et al. A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 8, 319–325 (2011).

    Article  CAS  Google Scholar 

  23. Katz, Y., Yizhar, O., Staiger, J. & Lampl, I. Optopatcher—an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. J. Neurosci. Methods 214, 113–117 (2013).

    Article  Google Scholar 

  24. Wise, K. D. et al. Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96, 1184–1202 (2008).

    Article  CAS  Google Scholar 

  25. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

  26. O’Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).

    Article  Google Scholar 

  27. Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  28. Felix, S. H. et al. Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive. J. Vis. Exp. 79, e50609 (2013).

  29. Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    Article  CAS  Google Scholar 

  30. Stieglitz, T., Beutel, H., Schuettler, M. & Meyer, J. U. Micromachined, polyimide-based devices for flexible neural interfaces. Biomed. Microdevices 2, 283–294 (2000).

    Article  Google Scholar 

  31. Robinson, D. A. The electrical properties of metal microelectrodes. Proc. IEEE 56, 1065–1071 (1968).

    Article  CAS  Google Scholar 

  32. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  Google Scholar 

  33. Robinson, D. L., Venton, B. J., Heien, M. L. A. V. & Wightman, R. M. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49, 1763–1773 (2003).

    Article  CAS  Google Scholar 

  34. Hamid, A. A. et al. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19, 117–126 (2016).

    Article  CAS  Google Scholar 

  35. Lebedev, M. A. & Nicolelis, M. A. Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).

    Article  CAS  Google Scholar 

  36. Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015).

    Article  CAS  Google Scholar 

  37. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).

    Article  CAS  Google Scholar 

  38. Izhikevich, E. M., Desai, N. S., Walcott, E. C. & Hoppensteadt, F. C. Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26, 161–167 (2003).

    Article  CAS  Google Scholar 

  39. Li, C. Y. T., Poo, M. M. & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 324, 643–646 (2009).

    Article  CAS  Google Scholar 

  40. Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).

    Article  CAS  Google Scholar 

  41. Rey, H. G., Pedreira, C. & Quiroga, R. Q. Past, present and future of spike sorting techniques. Brain Res. Bull. 119, 106–117 (2015).

    Article  Google Scholar 

  42. Neto, J. P. et al. Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. J. Neurophysiol. 116, 892–903 (2016).

    Article  CAS  Google Scholar 

  43. Wild, J., Prekopcsak, Z., Sieger, T., Novak, D. & Jech, R. Performance comparison of extracellular spike sorting algorithms for single-channel recordings. J. Neurosci. Methods 203, 369–376 (2012).

    Article  Google Scholar 

  44. Quiroga, R. Q., Nadasdy, Z. & Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004).

    Article  Google Scholar 

  45. Kadir, S. N., Goodman, D. F. & Harris, K. D. High-dimensional cluster analysis with the masked EM algorithm. Neural Comput. 26, 2379–2394 (2014).

    Article  Google Scholar 

  46. Anastassiou, C. A., Perin, R., Markram, H. & Koch, C. Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217–223 (2011).

    Article  CAS  Google Scholar 

  47. Holt, G. R. & Koch, C. Electrical interactions via the extracellular potential near cell bodies. J. Comput. Neurosci. 6, 169–184 (1999).

    Article  CAS  Google Scholar 

  48. Barbic, M., Moreno, A., Harris, T. D. & Kay, M. W. Detachable glass microelectrodes for recording action potentials in active moving organs. Am. J. Physiol. Heart Circ. Physiol. 312, H1248–H1259 (2017).

    Article  Google Scholar 

  49. Lee, A. K., Epsztein, J. & Brecht, M. Head-anchored whole-cell recordings in freely moving rats. Nat. Protoc. 4, 385–392 (2009).

    Article  CAS  Google Scholar 

  50. Long, M. A. & Lee, A. K. Intracellular recording in behaving animals. Curr. Opin. Neurobiol. 22, 34–44 (2012).

    Article  CAS  Google Scholar 

  51. Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch. 444, 491–498 (2002).

    Article  CAS  Google Scholar 

  52. Vreeland, R. F. et al. Biocompatible PEDOT: Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. Anal. Chem. 87, 2600–2607 (2015).

    Article  CAS  Google Scholar 

  53. Atta, N. F., Galal, A. & Ahmed, R. A. Poly(3,4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate. Bioelectrochemistry 80, 132–141 (2011).

    Article  CAS  Google Scholar 

  54. Tang, H., Lin, P., Chan, H. L. W. & Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 26, 4559–4563 (2011).

    Article  CAS  Google Scholar 

  55. Hunt, D. L., Linaro, D., Si, B., Romani, S. & Spruston, N. A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. Nat. Neurosci. 21, 985–995 (2018).

    Article  CAS  Google Scholar 

  56. Cui, X. Y. & Martin, D. C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators B 89, 92–102 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like thank A. Pais, D. Lee, V. Reddy, H. Esmailbeigi, B. Bowers, B. Biddle, J. Macklin, R. Patel, W. Sun, B. Barbarits, J. Venton, E. Privman, P. Ahamad and L. Coddington for their valuable contributions to this study. We would also like to thank J. Markara and B. Andrasfalvy for helpful discussions. This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.L.H., A.K.L., T.D.H. and M.B. conceived the project. T.D.H. supervised the project. M.B. developed and fabricated all multimodal devices. A.K.L. and M.B. aquired data with the Patch-Tritrode. D.L.H. and C.L. analysed the Patch-Tritrode data. D.L.H. and M.B. aquired data with the Patch-Silvertrode. D.L.H. analysed the Patch-Silvertrode data. R.D.S. and M.B. aquired Patch-Carbontrode data. D.L.H. and R.D.S. analysed the Patch-Carbontrode data. D.L.H. and M.B. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to David L. Hunt or Mladen Barbic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, D.L., Lai, C., Smith, R.D. et al. Multimodal in vivo brain electrophysiology with integrated glass microelectrodes. Nat Biomed Eng 3, 741–753 (2019). https://doi.org/10.1038/s41551-019-0373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0373-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing