Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation

Abstract

The intuitive control of upper-limb prostheses requires a man/machine interface that directly exploits biological signals. Here, we define and experimentally test an offline man/machine interface that takes advantage of the discharge timings of spinal motor neurons. The motor-neuron behaviour is identified by deconvolution of the electrical activity of muscles reinnervated by nerves of a missing limb in patients with amputation at the shoulder or humeral level. We mapped the series of motor-neuron discharges into control commands across multiple degrees of freedom via the offline application of direct proportional control, pattern recognition and musculoskeletal modelling. A series of experiments performed on six patients reveal that the man/machine interface has superior offline performance compared with conventional direct electromyographic control applied after targeted muscle innervation. The combination of surgical procedures, decoding and mapping into effective commands constitutes an interface with the output layers of the spinal cord circuitry that allows for the intuitive control of multiple degrees of freedom.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interfacing spinal motor neurons in humans.
Figure 2: Confusion matrices for the classification of motions of patients T1, T2 and T3 when using features extracted from global EMG analysis (r.m.s. and r.m.s. with time domain) and when using the neural information as motor-neuron discharge timings.
Figure 3: Single-channel electromyographic (EMG) recordings obtained from subject T1 during hand close and wrist supination of the phantom limb.
Figure 4: Motor-neuron behaviour during linearly increasing and decreasing intensity of activation in patient T4.
Figure 5: Estimates of muscle activation from EMG amplitude and motor neuron discharges.
Figure 6: Signal-based estimates of limb kinematics for three concurrently active degrees of freedom.
Figure 7: Subject-specific musculoskeletal geometry model built for patient T6.

Similar content being viewed by others

References

  1. Farina, D. & Aszmann, O. Bionic limbs: clinical reality and academic promises. Sci. Transl. Med. 6, 257ps12 (2014).

    Article  Google Scholar 

  2. Kuiken, T. A. et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007).

    Article  Google Scholar 

  3. Tan, D. W. et al. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).

    Article  Google Scholar 

  4. Lebedev, M. A. & Nicolelis, M. A. L. Brain-machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).

    Article  CAS  Google Scholar 

  5. Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T. & Horch, K. W. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J. Hand Surg. Am. 29, 605–615 (2004).

    Article  Google Scholar 

  6. Wodlinger, B. & Durand, D. M. Peripheral nerve signal recording and processing for artificial limb control. In 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10 6206–6209 (2010).

  7. Amsuess, S. et al. Context-dependent upper limb prosthesis control for natural and robust use. IEEE Trans. Neural Syst. Rehabil. Eng. 744–753 (2015).

    Article  Google Scholar 

  8. Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

    Article  CAS  Google Scholar 

  9. Donoghue, J. P. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5 (suppl.), 1085–1088 (2002).

    Article  CAS  Google Scholar 

  10. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    Article  CAS  Google Scholar 

  11. Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    Article  Google Scholar 

  12. Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    Article  CAS  Google Scholar 

  13. Jiang, N., Dosen, S. & Farina, D. Myoelectric control of artificial limbs: is there the need for a change of focus? IEEE Signal Proc. Mag. 22, 549–558 (2012).

    Google Scholar 

  14. Hoffer, J. & Loeb, G. Implantable electrical and mechanical interfaces with nerve and muscle. Ann. Biomed. Eng. 8, 351–360 (1980).

    Article  Google Scholar 

  15. Kuiken, T. A. et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 619–628 (2009).

    Article  CAS  Google Scholar 

  16. Gart, M. S., Souza, J. M. & Dumanian, G. A. Targeted muscle reinnervation in the upper extremity amputee: a technical roadmap. J. Hand Surg. Am. 40, 1877–1888 (2015).

    Article  Google Scholar 

  17. Kuiken, T. A. et al. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28, 245–253 (2004).

    CAS  PubMed  Google Scholar 

  18. Cheesborough, J. E., Dumanian, G. A., Smith, L. H. & Kuiken, T. A. Targeted muscle reinnervation and advanced prosthetic arms. Semin. Plast. Surg. 1, 62–72 (2015).

    Article  Google Scholar 

  19. Zhou, P. et al. Decoding a new neural machine interface for control of artificial limbs. J. Neurophysiol. 98, 2974–2982 (2007).

    Article  Google Scholar 

  20. Tikhonov, A. N. On the stability of inverse problems. Dokl. Akad. Nauk 39, 195–198 (1943).

    Google Scholar 

  21. Birdwell, J. A., Hargrove, L. J., Weir, R. F. & Kuiken, T. A. Extrinsic finger and thumb muscles command a virtual hand to allow individual finger and grasp control. IEEE Trans. Biomed. Eng. 62, 218–226 (2015).

    Article  Google Scholar 

  22. Cipriani, C., Segil, J. L., Birdwell, J. A. & Weir, R. F. Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 828–836 (2014).

    Article  Google Scholar 

  23. Li, Y., Smith, L. H., Hargrove, L. J., Weber, D. J. & Loeb, G. E. Sparse optimal motor estimation (SOME) for extracting commands for prosthetic limbs. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 104–111 (2013).

    Article  Google Scholar 

  24. Farina, D. et al. Non-invasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 810–819 (2014).

    Article  Google Scholar 

  25. Kapelner, T. et al. Classification of motor unit activity following targeted muscle reinnervation. In 7th Int. IEEE/EMBS Conf. Neural Eng. (NER) 652–654 (IEEE, 2015).

  26. Holobar, A., Glaser, V., Gallego, J. A., Dideriksen, J. L. & Farina, D. Noninvasive analysis of motor unit behavior in pathological tremor. In Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 7512–7515 (2011).

  27. Djilas, M., Azevedo-Coste, C., Guiraud, D. & Yoshida, K. Spike sorting of muscle spindle afferent nerve activity recorded with thin-film intrafascicular electrodes. Comput. Intell. Neurosci. 2010, 836346 (2010).

    Article  Google Scholar 

  28. Jezernik, S., Grill, W. W. & Sinkjaer, T. Neural network classification of nerve activity recorded in a mixed nerve. Neurol. Res. 23, 429–434 (2001).

    Article  CAS  Google Scholar 

  29. Parker, P., Englehart, K. & Hudgins, B. Myoelectric signal processing for control of powered limb prostheses. J. Electromyogr. Kines. 16, 541–548 (2006).

    Article  CAS  Google Scholar 

  30. Hargrove, L., Zhou, P., Englehart, K. & Kuiken, T. A. The effect of ECG interference on pattern-recognition-based myoelectric control for targeted muscle reinnervated patients. IEEE Trans. Biomed. Eng. 56, 2197–2201 (2009).

    Article  Google Scholar 

  31. Farina, D., Merletti, R. & Enoka, R. M. The extraction of neural strategies from the surface EMG. J. Appl. Phys. 96, 1486–1495 (2004).

    Google Scholar 

  32. Negro, F., Holobar, A. & Farina, D. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates. J. Physiol. 587, 5925–5938 (2009).

    Article  CAS  Google Scholar 

  33. Aszmann, O. C. et al. Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet 6736, 1–7 (2015).

    Google Scholar 

  34. Ursu, D. C., Urbanchek, M. G., Nedic, A., Cederna, P. S. & Gillespie, R. B. In vivo characterization of regenerative peripheral nerve interface function. J. Neural Eng. 13, 26012 (2016).

    Article  Google Scholar 

  35. Muceli, S. et al. Accurate and representative decoding of the neural drive to muscles in humans with multi-channel intramuscular thin-film electrodes. J. Physiol. 593, 3789–3804 (2015).

    Article  CAS  Google Scholar 

  36. Ortiz-Catalan, M., Hakansson, B. & Branemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).

    Article  Google Scholar 

  37. Glaser, V., Holobar, A. & Zazula, D. Real-time motor unit identification from high-density surface EMG. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 949–958 (2013).

    Article  Google Scholar 

  38. Jiang, N., Vujaklija, I., Rehbaum, H., Graimann, B. & Farina, D. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control? IEEE Trans. Neural Syst. Rehabil. Eng. 22, 549–558 (2014).

    Article  Google Scholar 

  39. Farina, D., Negro, F. & Dideriksen, J. L. The effective neural drive to muscles is the common synaptic input to motor neurons. J. Physiol. 49, 1–37 (2014).

    Google Scholar 

  40. Negro, F., Muceli, S., Castronovo, A. M., Holobar, A. & Farina, D. Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation. J. Neural Eng. 13, 26027 (2016).

    Article  Google Scholar 

  41. Farina, D. & Holobar, A. Characterization of human motor units from surface EMG decomposition. Proc. IEEE 104, 353–373 (2016).

    Article  Google Scholar 

  42. Farina, D., Negro, F., Gazzoni, M. & Enoka, R. M. Detecting the unique representation of motor-unit action potentials in the surface electromyogram. J. Neurophysiol. 100, 1223–1233 (2008).

    Article  Google Scholar 

  43. Negro, F. & Farina, D. Factors influencing the estimates of correlation between motor unit activities in humans. PLoS ONE 7, e44894 (2012).

    Article  Google Scholar 

  44. Delp, S. L. et al. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007).

    Article  Google Scholar 

  45. Saul, K. R. et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput. Methods Biomech. Biomed. Eng. 18, 1445–1458 (2014).

    Article  Google Scholar 

  46. Lu, T. W. & O’Connor, J. J. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32, 129–134 (1999).

    Article  CAS  Google Scholar 

  47. Thelen, D. G. & Anderson, F. C. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39, 1107–1115 (2006).

    Article  Google Scholar 

  48. Manal, K. & Buchanan, T. S. A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms. J. Biomech. 36, 1197–1202 (2003).

    Article  Google Scholar 

  49. Sartori, M., Reggiani, M., Farina, D. & Lloyd, D. G. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 7, e52618 (2012).

    Article  CAS  Google Scholar 

  50. Sartori, M., Farina, D. & Lloyd, D. G. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47, 3613–3621 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council Advanced Grant DEMOVE (contract #267888) (to D.F.), the Christian Doppler Research Foundation of the Austrian Federal Ministry of Science, Research and Economy (to O.C.A.), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 702491 (NeuralCon) (to F.N.) and Defense Advanced Research Projects Agency (DARPA N66001-15-1-4054) (to J.P.). The authors are grateful to M. Schweisfurth and H. Rehbaum for support in the experimental measurements, M. Castronovo for support in the data analysis, and C. Hofer and S. Salminger for clinical support.

Author information

Authors and Affiliations

Authors

Contributions

D.F. and O.C.A. conceived the study. I.V., T.K., M.S. and K.B. performed the acquisition. I.V., T.K., M.S., F.N., N.J., A.A. and J.P. conducted the analysis. D.F., I.V., T.K., M.S., F.N., N.J., K.B., J.P. and O.C.A. interpreted the data. D.F., I.V. and O.C.A. wrote and edited the manuscript.

Corresponding author

Correspondence to Dario Farina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farina, D., Vujaklija, I., Sartori, M. et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat Biomed Eng 1, 0025 (2017). https://doi.org/10.1038/s41551-016-0025

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0025

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research