Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole

Abstract

The newly launched X-ray satellite, eROSITA, has recently revealed two gigantic bubbles extending to ~80° above and below the Galactic Centre. The morphology of these ‘eROSITA bubbles’ bears a remarkable resemblance to the Fermi bubbles previously discovered by the Fermi Gamma-ray Space Telescope and its counterpart, the microwave haze. The physical origin of these striking structures has been intensely debated; however, because of their symmetry about the Galactic Centre, they probably originate from some energetic outbursts from the Galactic Centre in the past. Here we propose a theoretical model in which the eROSITA bubbles, Fermi bubbles and the microwave haze could be simultaneously explained by a single event of jet activity from the central supermassive black hole a few million years ago. Using numerical simulations, we show that this model could successfully reproduce the morphology and multi-wavelength spectra of the observed bubbles and haze, which allows us to derive critical constraints on the energetics and timescales of the outburst. This study serves as an important step forward in our understanding of the past Galactic Centre activity of our own Galaxy and may bring valuable insights into the broader picture of supermassive-black-hole–galaxy co-evolution in the context of galaxy formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulated gas and CR properties.
Fig. 2: Mock all-sky maps centred at the GC.
Fig. 3: Gamma-ray and microwave profiles.
Fig. 4: X-ray surface brightness profiles.
Fig. 5: Broad-band spectrum for the Fermi bubbles.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Source data associated with Figs. 1 and 2 are available from the corresponding author upon reasonable request.

Code availability

The simulations were performed using the code FLASH, publicly available at https://flash.rochester.edu/site/flashcode/, with modifications described in refs. 13,15. The CR module is a proprietary software product funded by NASA and NSF and is not publicly available.

References

  1. Predehl, P. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

    Article  ADS  Google Scholar 

  2. Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astrophys. J. 724, 1044–1082 (2010).

    Article  ADS  Google Scholar 

  3. Finkbeiner, D. P. Microwave interstellar medium emission observed by the Wilkinson Microwave Anisotropy Probe. Astrophys. J. 614, 186–193 (2004).

    Article  ADS  Google Scholar 

  4. Planck Collaboration. Planck intermediate results. IX. Detection of the Galactic haze with Planck. Astron. Astrophys. 554, A139 (2013).

    Article  Google Scholar 

  5. Carretti, E. et al. Giant magnetized outflows from the centre of the Milky Way. Nature 493, 66–69 (2013).

    Article  ADS  Google Scholar 

  6. Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the Galactic Center. Astrophys. J. 582, 246–256 (2003).

    Article  ADS  Google Scholar 

  7. Bland-Hawthorn, J. et al. The large-scale ionization cones in the Galaxy. Astrophys. J. 886, 45 (2019).

    Article  ADS  Google Scholar 

  8. Yang, H. Y., Ruszkowski, M. & Zweibel, E. Unveiling the origin of the Fermi bubbles. Galaxies 6, 29 (2018).

    Article  ADS  Google Scholar 

  9. Ackermann, M. et al. The spectrum and morphology of the Fermi bubbles. Astrophys. J. 793, 64 (2014).

    Article  ADS  Google Scholar 

  10. Crocker, R. M., Bicknell, G. V., Taylor, A. M. & Carretti, E. A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the Galactic Center’s giant outflows. Astrophys. J. 808, 107 (2015).

    Article  ADS  Google Scholar 

  11. Mou, G., Yuan, F., Bu, D., Sun, M. & Su, M. Fermi bubbles inflated by winds launched from the hot accretion flow in Sgr A*. Astrophys. J. 790, 109 (2014).

    Article  ADS  Google Scholar 

  12. Guo, F. & Mathews, W. G. The Fermi bubbles. I. Possible evidence for recent AGN jet activity in the galaxy. Astrophys. J. 756, 181 (2012).

    Article  ADS  Google Scholar 

  13. Yang, H.-Y. K., Ruszkowski, M., Ricker, P. M., Zweibel, E. & Lee, D. The Fermi bubbles: supersonic active galactic nucleus jets with anisotropic cosmic-ray diffusion. Astrophys. J. 761, 185 (2012).

    Article  ADS  Google Scholar 

  14. Yang, H.-Y. K., Ruszkowski, M. & Zweibel, E. The Fermi bubbles: gamma-ray, microwave and polarization signatures of leptonic AGN jets. Mon. Not. R. Astron. Soc. 436, 2734–2746 (2013).

    Article  ADS  Google Scholar 

  15. Yang, H.-Y. K. & Ruszkowski, M. The spatially uniform spectrum of the Fermi bubbles: the leptonic active galactic nucleus jet scenario. Astrophys. J. 850, 2 (2017).

    Article  ADS  Google Scholar 

  16. Cheng, K.-S., Chernyshov, D. O., Dogiel, V. A., Ko, C.-M. & Ip, W.-H. Origin of the Fermi bubble. Astrophys. J. Lett. 731, L17 (2011).

    Article  ADS  Google Scholar 

  17. Sarkar, K. C., Nath, B. B. & Sharma, P. Clues to the origin of Fermi bubbles from O viii/O vii line ratio. Mon. Not. R. Astron. Soc. 467, 3544–3555 (2017).

    Article  ADS  Google Scholar 

  18. Mertsch, P. & Petrosian, V. Fermi bubbles from stochastic acceleration of electrons in a Galactic outflow. Astron. Astrophys. 622, A203 (2019).

    Article  ADS  Google Scholar 

  19. Abeysekara, A. U. et al. Search for very high-energy gamma rays from the northern Fermi bubble region with HAWC. Astrophys. J. 842, 85 (2017).

    Article  ADS  Google Scholar 

  20. Guo, F., Mathews, W. G., Dobler, G. & Oh, S. P. The Fermi bubbles. II. The potential roles of viscosity and cosmic-ray diffusion in jet models. Astrophys. J. 756, 182 (2012).

    Article  ADS  Google Scholar 

  21. Berkhuijsen, E. M., Haslam, C. G. T. & Salter, C. J. Are the Galactic loops supernova remnants? Astron. Astrophys. 14, 252–262 (1971).

    ADS  Google Scholar 

  22. Das, K. K. et al. Constraining the distance to the North Polar Spur with Gaia DR2. Mon. Not. R. Astron. Soc. 498, 5863–5872 (2020).

    Article  ADS  Google Scholar 

  23. Sofue, Y. Bipolar hypershell Galactic Center starburst model: further evidence from ROSAT data and new radio and X-ray simulations. Astrophys. J. 540, 224–235 (2000).

    Article  ADS  Google Scholar 

  24. Kataoka, J. et al. X-ray and gamma-ray observations of the Fermi bubbles and NPS/Loop I structures. Galaxies 6, 27 (2018).

    Article  ADS  Google Scholar 

  25. LaRocca, D. M. et al. An analysis of the North Polar Spur using HaloSat. Astrophys. J. 904, 54 (2020).

    Article  ADS  Google Scholar 

  26. Panopoulou, G. V., Dickinson, C., Readhead, A. C. S., Pearson, T. J. & Peel, M. W. Revisiting the distance to radio Loops I and IV using Gaia and radio/optical polarization data. Astrophys. J. 922, 210 (2021).

    Article  ADS  Google Scholar 

  27. Ezoe, Y., Ohashi, T. & Mitsuda, K. High-resolution X-ray spectroscopy of astrophysical plasmas with X-ray microcalorimeters. Rev. Mod. Plasma Phys. 5, 4 (2021).

    Article  ADS  Google Scholar 

  28. Barret, D. et al. The Athena space X-ray observatory and the astrophysics of hot plasma. Astron. Nachr. 341, 224–235 (2020).

    Article  ADS  Google Scholar 

  29. Barret, D. et al. The Athena X-ray Integral Field Unit (X-IFU). In Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 10699 (eds den Herder, J.-W. A. et al.) 106991G (SPIE (Society of Photo-Optical Instrumentation Engineers), 2018).

  30. Zhang, R. & Guo, F. Simulating the Fermi bubbles as forward shocks driven by AGN jets. Astrophys. J. 894, 117 (2020).

    Article  ADS  Google Scholar 

  31. Totani, T. A RIAF interpretation for the past higher activity of the Galactic Center black hole and the 511 keV annihilation emission. Publ. Astron. Soc. Jpn 58, 965–977 (2006).

    Article  ADS  Google Scholar 

  32. Fox, A. J. et al. Probing the Fermi bubbles in ultraviolet absorption: a spectroscopic signature of the Milky Way’s biconical nuclear outflow. Astrophys. J. Lett. 799, L7 (2015).

    Article  ADS  Google Scholar 

  33. Miller, M. J. & Bregman, J. N. The interaction of the Fermi bubbles with the Milky Way’s hot gas halo. Astrophys. J. 829, 9 (2016).

    Article  ADS  Google Scholar 

  34. Bordoloi, R. et al. Mapping the nuclear outflow of the Milky Way: studying the kinematics and spatial extent of the northern Fermi bubble. Astrophys. J. 834, 191 (2017).

    Article  ADS  Google Scholar 

  35. Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019).

    Article  ADS  Google Scholar 

  36. Heywood, I. et al. Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event. Nature 573, 235–237 (2019).

    Article  ADS  Google Scholar 

  37. Paumard, T. et al. The two young star disks in the central parsec of the galaxy: properties, dynamics, and formation. Astrophys. J. 643, 1011–1035 (2006).

    Article  ADS  Google Scholar 

  38. Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    Article  ADS  Google Scholar 

  39. Ashley, T. et al. Mapping outflowing gas in the Fermi bubbles: a UV absorption survey of the Galactic nuclear wind. Astrophys. J. 898, 128 (2020).

    Article  ADS  Google Scholar 

  40. Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    Article  ADS  Google Scholar 

  41. Lee, D. & Deane, A. E. An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics. J. Comput. Phys. 228, 952–975 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Strong, A. W. & Moskalenko, I. V. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998).

    Article  ADS  Google Scholar 

  43. Crocker, R. M., Jones, D. I., Melia, F., Ott, J. & Protheroe, R. J. A lower limit of 50 microgauss for the magnetic field near the Galactic Centre. Nature 463, 65–67 (2010).

    Article  ADS  Google Scholar 

  44. Arnaud, K. A. XSPEC: the first ten years. In ASP Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific, 1996).

  45. Miller, M. J. & Bregman, J. N. The structure of the Milky Way’s hot gas halo. Astrophys. J. 770, 118 (2013).

    Article  ADS  Google Scholar 

  46. Teodoro, E. M. D. et al. Blowing in the Milky Way wind: neutral hydrogen clouds tracing the Galactic nuclear outflow. Astrophys. J. 855, 33 (2018).

    Article  ADS  Google Scholar 

  47. Fox, A. J. et al. Kinematics of the Magellanic Stream and implications for its ionization. Astrophys. J. 897, 23 (2020).

    Article  ADS  Google Scholar 

  48. Turk, M. J. et al. yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011).

    Article  ADS  Google Scholar 

  49. Su, M. & Finkbeiner, D. P. Evidence for gamma-ray jets in the Milky Way. Astrophys. J. 753, 61 (2012).

    Article  ADS  Google Scholar 

  50. Kataoka, J. et al. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles’ edges. Astrophys. J. 779, 57 (2013).

    Article  ADS  Google Scholar 

  51. Fang, T. & Jiang, X. High resolution X-ray spectroscopy of the local hot gas along the 3C 273 sightline. Astrophys. J. Lett. 785, L24 (2014).

    Article  ADS  Google Scholar 

  52. Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. 88, 253 (1993).

    Article  Google Scholar 

  53. Kataoka, J. et al. Global structure of isothermal diffuse X-ray emission along the Fermi bubbles. Astrophys. J. 807, 77 (2015).

    Article  ADS  Google Scholar 

  54. Rosswog, S. & Brüggen, M. Introduction to High-Energy Astrophysics (Cambridge University Press, 2011).

  55. Blandford, R., Meier, D. & Readhead, A. Relativistic jets from active galactic nuclei. Annu. Rev. Astron. Astrophys. 57, 467–509 (2019).

    Article  ADS  Google Scholar 

  56. Lagage, P. O. & Cesarsky, C. J. The maximum energy of cosmic rays accelerated by supernova shocks. Astron. Astrophys. 125, 249–257 (1983).

    ADS  MATH  Google Scholar 

  57. Zweibel, E. G. Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–637 (2003).

    Article  ADS  Google Scholar 

  58. Sironi, L. & Spitkovsky, A. Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014).

    Article  ADS  Google Scholar 

  59. Sarkar, K. C. Possible connection between the asymmetry of the North Polar Spur and Loop I and Fermi bubbles. Mon. Not. R. Astron. Soc. 482, 4813–4823 (2019).

    Article  ADS  Google Scholar 

  60. Cecil, G., Wagner, A. Y., Bland-Hawthorn, J., Bicknell, G. V. & Mukherjee, D. Tracing the Milky Way’s vestigial nuclear jet. Astrophys. J. 922, 254 (2021).

    Article  ADS  Google Scholar 

  61. Fiacconi, D., Sijacki, D. & Pringle, J. E. Galactic nuclei evolution with spinning black holes: method and implementation. Mon. Not. R. Astron. Soc. 477, 3807–3835 (2018).

    Article  ADS  Google Scholar 

  62. Bardeen, J. M. & Petterson, J. A. The Lense–Thirring effect and accretion disks around Kerr black holes. Astrophys. J. Lett. 195, L65 (1975).

    Article  ADS  Google Scholar 

  63. Dobler, G. & Finkbeiner, D. P. Extended anomalous foreground emission in the WMAP three-year data. Astrophys. J. 680, 1222–1234 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H.-Y.K.Y. acknowledges support from the Yushan Scholar Program of the Ministry of Education of Taiwan and Ministry of Science and Technology of Taiwan (MOST 109-2112-M-007-037-MY3). M.R. acknowledges support from National Science Foundation Collaborative Research Grants AST-1715140 and AST-2009227 and National Aeronautics and Space Administration grants 80NSSC20K1541 and 80NSSC20K1583. E.G.Z. acknowledges support from National Science Foundation Collaborative Research Grant AST-2009323. The simulations are performed and analysed using computing facilities operated by the National Center for High-performance Computing and the Center for Informatics and Computation in Astronomy at National Tsing Hua University. FLASH was developed largely by the US Department of Energy-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at University of Chicago. Data analysis presented in this paper was conducted with the publicly available yt visualization software48.

Author information

Authors and Affiliations

Authors

Contributions

H.-Y.K.Y. carried out the simulations and analyses and prepared the manuscript. M.R. participated in the interpretation of the simulation results and assisted in the preparation of the manuscript. E.G.Z. contributed to the discussions of particle acceleration and assisted in the preparation of the manuscript.

Corresponding author

Correspondence to H.-Y. Karen Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jun Kataoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HY.K., Ruszkowski, M. & Zweibel, E.G. Fermi and eROSITA bubbles as relics of the past activity of the Galaxy’s central black hole. Nat Astron 6, 584–591 (2022). https://doi.org/10.1038/s41550-022-01618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01618-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing