Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An update on male infertility and intratesticular testosterone—insight into novel serum biomarkers

Abstract

Intratesticular testosterone is vital for spermatogenesis, male fertility, and virility. Currently the only method to assess levels of intratesticular testosterone is to perform testicular biopsy which is invasive and can lead to several complications. Approaches to assess intratesticular testosterone have been understudied but hold promise as future male contraceptive agents and may grant the ability to monitor patients undergoing hormonal changes from therapeutic and diagnostic perspectives. Previous studies have sought to assess the utility of 17-hydroxyprogesterone (17-OHP) and insulin-like factor 3 (INSL3) as accurate surrogate biomarkers of intratesticular testosterone. The aim of this review is thus to highlight the importance of intratesticular testosterone and the consequent advances that have been made to elucidate the potential of biomarkers for intratesticular testosterone in the context of male infertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of 17-OHP and INSL3 as it relates to ITT.
Fig. 2: The biosynthesis of 17-OHP and testosterone.

Similar content being viewed by others

References

  1. Infertility. 2020. https://www.who.int/news-room/fact-sheets/detail/infertility. Accessed 7 Oct 2021.

  2. Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9. p. 1-3

  3. Committee of the American Society for Reproductive Medicine P. Definitions of infertility and recurrent pregnancy loss. Fertil Steril. 2008;90:S60.

    Article  Google Scholar 

  4. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13. p. 1-2

  5. Bhasin S. Approach to the infertile man. J Clin Endocrinol Metab. 2007;92:1995–2004.

    Article  CAS  PubMed  Google Scholar 

  6. Optimal Evaluation of the Infertile Male - American Urological Association. https://www.auanet.org/guidelines/archived-documents/male-infertility-optimal-evaluation-best-practice-statement. Accessed 7 Oct 2021.

  7. Nassar GN, Leslie SW. Physiology, testosterone. StatPearls Publishing; 2018. http://www.ncbi.nlm.nih.gov/pubmed/30252384.

  8. Nedresky D, Singh G. Physiology, luteinizing hormone. StatPearls Publishing; 2019 http://www.ncbi.nlm.nih.gov/pubmed/30969514.

  9. Robertson DM, Pratis K, Stanton PG, Meachem SJ, O’Donnell L, Kretser DM. Hormonal regulation of spermatogenesis in primates and man: Insights for development of the male hormonal contraceptive. J Androl. 2002;23:149–62.

    PubMed  Google Scholar 

  10. TR K. What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction. 2005;130:293–302.

    Article  Google Scholar 

  11. Dohle GR, Smit M, Weber RFA. Androgens and male fertility. World J Urol. 2003;21:341–5.

    Article  CAS  PubMed  Google Scholar 

  12. Anawalt BD, Bebb RA, Matsumoto AM, Groome NP, Illingworth PJ, McNeilly AS, et al. Serum inhibin B levels reflect Sertoli cell function in normal men and men with testicular dysfunction. J Clin Endocrinol Metab. 1996;81:3341–5.

    CAS  PubMed  Google Scholar 

  13. Finkel DM, Phillips JL, Snyder PJ. Stimulation of spermatogenesis by gonadotropins in men with hypogonadotropic hypogonadism. N Engl J Med. 1985;313:651–5.

    Article  CAS  PubMed  Google Scholar 

  14. Nieschlag E, Simoni M, Gromoll J, Weinbauer GF. Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol. 1999;51:139–46.

    Article  CAS  Google Scholar 

  15. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, et al. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA. 1998;95:13612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM. The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology. 2000;141:1795–803.

    Article  CAS  PubMed  Google Scholar 

  17. Tapanainen JS, Aittomaki K, Min J, Vakivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet. 1997;15:205–6.

    Article  CAS  PubMed  Google Scholar 

  18. Verhoeven G, Willems A, Denolet E, Swinnen JV, Gendt K DE. Androgens and spermatogenesis: lessons from transgenic mouse models. Philos Trans R Soc B: Biol Sci. 2010;365:1537.

    Article  CAS  Google Scholar 

  19. Johnson L, Thompson DL. Effect of seasonal changes in Leydig cell number on the volume of smooth endoplasmic reticulum in Leydig cells and intratesticular testosterone content in stallions. J Reprod Fertil. 1987;81:227–32.

    Article  CAS  PubMed  Google Scholar 

  20. Sharpe RM. Intratesticular control of steroidogenesis. Clin Endocrinol. 1990;33:787–807.

    Article  CAS  Google Scholar 

  21. Bremner WJ, Millar MR, Sharpe RM, Saunders PTK. Immunohistochemical localization of androgen receptors in the rat testis: Evidence for stage-dependent expression and regulation by androgens. Endocrinology. 1994;135:1227–34.

    Article  CAS  PubMed  Google Scholar 

  22. Vornberger W, Prins G, Musto NA, Suarez-Quian CA. Androgen receptor distribution in rat testis: New implications for androgen regulation of spermatogenesis. Endocrinology. 1994;134:2307–16.

    Article  CAS  PubMed  Google Scholar 

  23. Shan LX, Zhu LJ, Bardin CW, Hardy MP. Quantitative analysis of androgen receptor messenger ribonucleic acid in developing leydig cells and sertoli cells by in situ hybridization. Endocrinology. 1995;136:3856–62.

    Article  CAS  PubMed  Google Scholar 

  24. Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952;55:548–73.

    Article  CAS  PubMed  Google Scholar 

  25. Hess RA. Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium: light microscopic observations of perfusion-fixed and plastic-embedded testes. Biol Reprod. 1990;43:525–42.

    Article  CAS  PubMed  Google Scholar 

  26. Winters SJ, Moore JP, Clark BJ. Leydig cell insufficiency in hypospermatogenesis: a paracrine effect of activin–inhibin signaling? Andrology. 2018;6:262–71.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev. 2012;64:16–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shupe J, Cheng J, Puri P, Kostereva N, Walker WH. Regulation of sertoli-germ cell adhesion and sperm release by fsh and nonclassical testosterone signaling. Mol Endocrinol. 2011;25:238–52.

    Article  CAS  PubMed  Google Scholar 

  29. O’Donnell L, McLachlan RI, Wreford NG, de Kretser DM, DM R. Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biol Reprod. 1996;55:895–901.

    Article  PubMed  Google Scholar 

  30. Walker WH. Non-classical actions of testosterone and spermatogenesis. Philos Trans R Soc B: Biol Sci. 2010;365:1557–69.

    Article  CAS  Google Scholar 

  31. Smith LB, Walker WH. The regulation of spermatogenesis by androgens. Semin Cell Developmental Biol. 2014;30:2–13.

    Article  CAS  Google Scholar 

  32. Patel A, Patel P, Bitran J, Ramasamy R. Can serum 17-hydroxyprogesterone and insulin-like factor 3 be used as a marker for evaluation of intratesticular testosterone? Transl Androl Urol. 2019;8:S58–S63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Amory JK, Coviello AD, Page ST, Anawalt BD, Matsumoto AM, Bremner WJ. Serum 17-hydroxyprogesterone strongly correlates with intratesticular testosterone in gonadotropin-suppressed normal men receiving various dosages of human chorionic gonadotropin. Fertil Steril. 2008;89:380–6.

    Article  CAS  PubMed  Google Scholar 

  34. Honour JW. 17-Hydroxyprogesterone in children, adolescents and adults. Ann Clin Biochem. 2014;51:424–40.

    Article  CAS  PubMed  Google Scholar 

  35. White PC. Neonatal screening for congenital adrenal hyperplasia. Nat Rev Endocrinol. 2009;5:490–8.

    Article  CAS  PubMed  Google Scholar 

  36. Winters SJ, Takahashi J, Troen P. Secretion of testosterone and its $Δ$4 precursor steroids into spermatic vein blood in men with varicocele-associated infertility. J Clin Endocrinol Metab. 1999;84:997–1001.

    CAS  PubMed  Google Scholar 

  37. Roth MY, Page ST, Lin K, Anawalt BD, Matsumoto AM, Snyder CN, et al. Dose-dependent increase in intratesticular testosterone by very low-dose human chorionic gonadotropin in normal men with experimental gonadotropin deficiency. J Clin Endocrinol Metab. 2010;95:3806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lima TFN, Patel P, Blachman-Braun R, Madhusoodanan V, Ramasamy R. Serum 17-hydroxyprogesterone is a potential biomarker for evaluating intratesticular testosterone. J Urol. 2020;204:551–6.

    Article  PubMed  Google Scholar 

  39. Strott CA, Yoshimi T, Lipsett MB. Plasma progesterone and 17-hydroxyprogesterone in normal men and children with congenital adrenal hyperplasia. J Clin Investig. 1969;48:930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sólyom J. Diurnal variation in blood 17-hydroxyprogesterone concentrations in untreated congenital adrenal hyperplasia. Arch Dis Child. 1984;59:743.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lima TFN, Frech FS, Blachman-Braun R, Rakitina E, Patel P, Ramasamy R. Association of aging and obesity with decreased 17-hydroxyprogesterone, a serum biomarker of intratesticular testosterone. Int J Impot Res. 2020.

  42. Martínez-Montoro JI, Molina-Vega M, Asenjo-Plaza M, García-Ruiz MC, Varea-Marineto E, Plaza-Andrade I, et al. Adiposity is associated with decreased serum 17-hydroxyprogesterone levels in non-diabetic obese men aged 18–49: a cross-sectional study. J Clin Med. 2020;9:3873.

    Article  PubMed Central  Google Scholar 

  43. Lima TFN, Frech FS, Patel P, Blachman‐Braun R, Ramasamy R. Effect of microsurgical varicocelectomy on semen parameters, serum, and intratesticular testosterone levels. BJUI Compass. 2020;1:93–99.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lima TFN, Rakitina E, Blachman-Braun R, Ramasamy R. Evaluation of a serum 17-hydroxyprogesterone as predictor of semen parameter(s) improvement in men undergoing medical treatment for infertility. Can Urol Assoc J. 2020;15.

  45. Albrethsen J, Johannsen TH, Jørgensen N, Frederiksen H, Sennels HP, Jørgensen HL, et al. Evaluation of serum insulin-like factor 3 quantification by LC-MS/MS as a biomarker of leydig cell function. J Clin Endocrinol Metab. 2020;105:1868–77.

    Article  Google Scholar 

  46. Bay K, Matthiesson KL, McLachlan RI, Andersson AM. The effects of gonadotropin suppression and selective replacement on insulin-like factor 3 secretion in normal adult men. J Clin Endocrinol Metab. 2006;91:1108–11.

    Article  CAS  PubMed  Google Scholar 

  47. Bay K, Hartung S, Ivell R, Schumacher M, Jürgensen D, Jorgensen N, et al. Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizing hormone-testosterone axis. J Clin Endocrinol Metab. 2005;90:3410–8.

    Article  CAS  PubMed  Google Scholar 

  48. Roth MY, Lin K, Bay K, Amory JK, Anawalt BD, Matsumoto AM, et al. Serum insulin-like factor 3 is highly correlated with intratesticular testosterone in normal men with acute, experimental gonadotropin deficiency stimulated with low-dose human chorionic gonadotropin: a randomized, controlled trial. Fertil Steril. 2013;99:132–9.

    Article  CAS  PubMed  Google Scholar 

  49. Anand-Ivell R, Tremellen K, Soyama H, Enki D, Ivell R. Male seminal parameters are not associated with Leydig cell functional capacity in men. Andrology. 2021.

  50. Kumanov P, Nandipati K, Tomova A, Agarwal A. Inhibin B is a better marker of spermatogenesis than other hormones in the evaluation of male factor infertility. Fertil Steril. 2006;86:332–8.

    Article  CAS  PubMed  Google Scholar 

  51. Goulis DG, Tsametis C, Iliadou PK, Polychronou P, Kantartzi PD, Tarlatzis BC, et al. Serum inhibin B and anti-Müllerian hormone are not superior to follicle-stimulating hormone as predictors of the presence of sperm in testicular fine-needle aspiration in men with azoospermia. Fertil Steril. 2009;91:1279–84.

    Article  CAS  PubMed  Google Scholar 

  52. Dohle GR, Elzanaty S, van Casteren NJ. Testicular biopsy: clinical practice and interpretation. Asian J Androl. 2012;14:88.

    Article  PubMed  Google Scholar 

  53. Dieckmann KP, Heinemann V, Frey U, Pichlmeier U. How harmful is contralateral testicular biopsy? An analysis of serial imaging studies and a prospective evaluation of surgical complications. Eur Urol. 2005;48:662–72.

    Article  PubMed  Google Scholar 

  54. Azzouni F, Godoy A, Li Y, Mohler J. The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol. 2012; 2012.

  55. Zirkin BR, Santulli R, Awoniyi CA, Ewing LL. Maintenance of advanced spermatogenic cells in the adult rat testis: Quantitative relationship to testosterone concentration within the testis. Endocrinology. 1989;124:3043–9.

    Article  CAS  PubMed  Google Scholar 

  56. Coviello AD, Bremner WJ, Matsumoto AM, Herbst KL, Amory JK, Anawalt BD, et al. Intratesticular testosterone concentrations comparable with serum levels are not sufficient to maintain normal sperm production in men receiving a hormonal contraceptive regimen. J Androl. 2004;25:931–8.

    Article  CAS  PubMed  Google Scholar 

  57. McBride JA, Coward RM. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian J Androl. 2016;18:373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsumoto AM, Karpas AE, Bremner WJ. Chronic human chorionic gonadotropin administration in normal men: evidence that follicle-stimulating hormone is necessary for the maintenance of quantitatively normal spermatogenesis in man. J Clin Endocrinol Metab. 1986;62:1184–92.

    Article  CAS  PubMed  Google Scholar 

  59. Wiehle R, Cunningham GR, Pitteloud N, Wike J, Hsu K, Fontenot GK, et al. Testosterone restoration using enclomiphene citrate in men with secondary hypogonadism: a pharmacodynamic and pharmacokinetic study. BJU Int. 2013;112:1188–1200.

    Article  CAS  PubMed Central  Google Scholar 

  60. Boehm U, Bouloux PM, Dattani MT, de Roux N, Dode C, Dunkel L, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism_pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11:547–64.

    Article  PubMed  Google Scholar 

  61. Mulhall JP, Trost LW, Brannigan RE, Kurtz EG, Redmon B, Chiles KA, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200:423.

    Article  PubMed  Google Scholar 

  62. Ring JD, Lwin AA, Köhler TS. Current medical management of endocrine-related male infertility. Asian J Androl. 2016;18:357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Helo S, Mahon J, Ellen J, Wiehle R, Fontenot G, Hsu K, et al. Serum levels of enclomiphene and zuclomiphene in men with hypogonadism on long-term clomiphene citrate treatment. BJU Int. 2017;119:171–6.

    Article  CAS  PubMed  Google Scholar 

  64. Kim ED, McCullough A, Kaminetsky J. Oral enclomiphene citrate raises testosterone and preserves sperm counts in obese hypogonadal men, unlike topical testosterone: restoration instead of replacement. BJU Int. 2016;117:677–85.

    Article  CAS  PubMed  Google Scholar 

  65. Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2019;2019.

  66. Gava G, Meriggiola MC. Update on male hormonal contraception. Ther Adv Endocrinol Metab. 2019;10:1–9.

    Article  Google Scholar 

  67. Behre HM, Zitzmann M, Anderson RA, Handelsman DJ, Lestari SW, McLachlan RI, et al. Efficacy and safety of an injectable combination hormonal contraceptive for men. J Clin Endocrinol Metab. 2016;101:4779–88.

    Article  CAS  PubMed  Google Scholar 

  68. Matsumoto AM. Effects of chronic testosterone administration in normal men: safety and efficacy of high dosage testosterone and parallel dose-dependent suppression of luteinizing hormone, follicle-stimulating hormone, and sperm production. J Clin Endocrinol Metab. 1990;70:282–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KS was responsible for conception and design, acquisition, analysis, interpretation of data, drafting, revising, and final approval of the work. KP was responsible for design, acquisition, analysis, interpretation of data, drafting, revising, and final approval of the work. UM was responsible for interpretation of data, drafting, revising, and final approval of the work. PP was responsible for conception and design, acquisition, analysis, interpretation of data, drafting, revising, and final approval of the work. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Premal Patel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidhom, K., Panchendrabose, K., Mann, U. et al. An update on male infertility and intratesticular testosterone—insight into novel serum biomarkers. Int J Impot Res 34, 673–678 (2022). https://doi.org/10.1038/s41443-021-00507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-021-00507-7

Search

Quick links