Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thrombopoietin-based CAR-T cells demonstrate in vitro and in vivo cytotoxicity to MPL positive acute myelogenous leukemia and hematopoietic stem cells

Abstract

While targeting CD19+ hematologic malignancies with CAR T cell therapy using single chain variable fragments (scFv) has been highly successful, novel strategies for applying CAR T cell therapy with other tumor types are necessary. In the current study, CAR T cells were designed using a ligand binding domain instead of an scFv to target stem-like leukemia cells. Thrombopoietin (TPO), the natural ligand to the myeloproliferative leukemia protein (MPL) receptor, was used as the antigen binding domain to engage MPL expressed on hematopoietic stem cells (HSC) and erythropoietic and megakaryocytic acute myeloid leukemias (AML). TPO-CAR T cells were tested in vitro against AML cell lines with varied MPL expression to test specificity. TPO-CAR T cells were specifically activating and cytotoxic against MPL+ leukemia cell lines. Though the TPO-CAR T cells did not extend survival in vivo, it successfully cleared the MPL+ fraction of leukemia cells. As expected, we also show the TPO-CAR is cytotoxic against MPL expressing bone marrow compartment in AML xenograft models. The data collected demonstrate preclinical potential of TPO-CAR T cells for stem-like leukemia through assessment of targeted killing of MPL+ cells and may facilitate subsequent HSC transplant under reduced intensity conditioning regimens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Establishing MPL as a target in cancer and stem cell biology.
Fig. 2: Generating a thrombopoietin ligand-based CAR to target MPL.
Fig. 3: Cytotoxicity and specificity of the TPO CAR.
Fig. 4: Blocking TPO-CAR activity with thrombopoietin.
Fig. 5: In vivo specificity of TPO-CAR in leukemia xenografts against MPL.

Similar content being viewed by others

References

  1. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huston MM-H JS, Tai MS, McCartney J, Warren F, Haber E, Oppermann. H. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 1991;203:46–52.

    Article  Google Scholar 

  3. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5:177ra38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chang ZL, Chen YY. CARs: synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med. 2017;23:430–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013;122:4129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15:1145–54.

    Article  CAS  PubMed  Google Scholar 

  8. Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res. 2018;37:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Murad JM, Graber DJ, Sentman CL. Advances in the use of natural receptor- or ligand-based chimeric antigen receptors (CARs) in haematologic malignancies. Best Pract Res Clin Haematol. 2018;31:176–83.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994;369:565–8.

    Article  CAS  PubMed  Google Scholar 

  11. Fox N, Priestley G, Papayannopoulou T, Kaushansky K. Thrombopoietin expands hematopoietic stem cells after transplantation. J Clin Investig. 2002;110:389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature. 1994;369:568–71.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1:685–97.

    Article  CAS  PubMed  Google Scholar 

  14. Lok S, Foster DC. The structure, biology and potential therapeutic applications of recombinant thrombopoietin. STEM CELLS. 1994;12:586–98.

    Article  CAS  PubMed  Google Scholar 

  15. Albitar M, Manshouri T, Kantarjian H, Keating M, Estrov Z, Faber J, et al. Correlation between lower c-mpl protein expression and favorable cytogenetic groups in acute myeloid leukemia. Leukemia Res. 1999;23:63–69.

    Article  CAS  Google Scholar 

  16. Lange B. The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br J Haematol. 2000;110:512–24.

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Rao Q, Yu P, Chen SY, Li Z, Xing HY, et al. Expression of MPL in leukemia stem cells and its role in stemness maintainance. Blood. 2016;128:1723.

  18. Quentmeier H, Zaborski M, Graf G, Ludwig WD, Drexler HG. Expression of the receptor MPL and proliferative effects of its ligand thrombopoietin on human leukemia cells. Leukemia. 1996;10:297–310.

    CAS  PubMed  Google Scholar 

  19. Rauch PJ, Ellegast JM, Widmer CC, Fritsch K, Goede JS, Valk PJ, et al. MPL expression on AML blasts predicts peripheral blood neutropenia and thrombocytopenia. Blood. 2016;128:2253–7.

    Article  CAS  PubMed  Google Scholar 

  20. Vigon I, Dreyfus F, Melle J, Viguie F, Ribrag V, Cocault L, et al. Expression of the c-mpl proto-oncogene in human hematologic malignancies. Blood. 1993;82:877–83.

    Article  CAS  PubMed  Google Scholar 

  21. Yu P, Qiu SW, Rao Q, Lin D, Xing HY, Tang KJ. et al. Expression of c-MPL in leukemic stem cells from acute myeloid leukemia patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi.2012;20:1052–5.

    CAS  PubMed  Google Scholar 

  22. Wetzler M, Baer MR, Bernstein SH, Blumenson L, Stewart C, Barcos M, et al. Expression of c-mpl mRNA, the receptor for thrombopoietin, in acute myeloid leukemia blasts identifies a group of patients with poor response to intensive chemotherapy. J Clin Oncol. 1997;15:2262–8.

    Article  CAS  PubMed  Google Scholar 

  23. Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101:3142–9.

    Article  CAS  PubMed  Google Scholar 

  24. Boyd AL, Aslostovar L, Reid J, Ye W, Tanasijevic B, Porras DP, et al. Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of human AML recurrence. Cancer Cell. 2018;34:483–498 e5.

    Article  CAS  PubMed  Google Scholar 

  25. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, et al. Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60:4403–11.

    CAS  PubMed  Google Scholar 

  26. Dong-Feng Z, Ting L, Yong Z, Cheng C, Xi Z, Pei-Yan K. The TPO/c-MPL pathway in the bone marrow may protect leukemia cells from chemotherapy in AML patients. Pathol Oncol Res. 2014;20:309–17.

    Article  PubMed  CAS  Google Scholar 

  27. Ninos JM, Jefferies LC, Cogle CR, Kerr WG. The thrombopoietin receptor, c-Mpl, is a selective surface marker for human hematopoietic stem cells. J Transl Med. 2006;4:9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li H, Zhao N, Li Y, Xing H, Chen S, Xu Y, et al. c-MPL is a candidate surface marker and confers self-renewal, quiescence, chemotherapy resistance, and leukemia initiation potential in leukemia. Stem Cells. Stem Cells. 2018;36:1685–96.

    Article  CAS  PubMed  Google Scholar 

  29. Sakashita K, Kato I, Daifu T, Saida S, Hiramatsu H, Nishinaka Y, et al. In vitro expansion of CD34(+)CD38(-) cells under stimulation with hematopoietic growth factors on AGM-S3 cells in juvenile myelomonocytic leukemia. Leukemia. 2015;29:606–14.

    Article  CAS  PubMed  Google Scholar 

  30. Bouscary D, Prudhomme C, Quesnel B, Melle J, Picard F, Dreyfus F. c-mpl expression in hematologic disorders. Leuk Lymphoma. 1995;17:19–26.

    Article  CAS  PubMed  Google Scholar 

  31. Wegehaupt AK, Roufs EK, Hewitt CR, Killian ML, Gorbatenko O, Anderson CM, et al. Recovery and assessment of leukocytes from LR Express filters. Biologicals. 2017;49:15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neron S, Dussault N, Racine C. Whole-blood leukoreduction filters are a source for cryopreserved cells for phenotypic and functional investigations on peripheral blood lymphocytes. Transfusion. 2006;46:537–44.

    Article  PubMed  Google Scholar 

  33. Feese MD, Tamada T, Kato Y, Maeda Y, Hirose M, Matsukura Y, et al. Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment. Proc Natl Acad Sci USA. 2004;101:1816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, et al. The pediatric cancer genome project. Nat Genet. 2012;44:619–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45:602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481:329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488:43–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Stewart E, Shelat AA, Qu C, Bahrami A, Hatley M, et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell. 2013;24:710–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arai Y, Choi U, Corsino CI, Koontz SM, Tajima M, Sweeney CL, et al. Myeloid conditioning with c-kit-Targeted CAR-T cells enables donor stem cell engraftment. Mol Ther. 2018;26:1181–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuter DJ. The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol. 2013;98:10–23.

    Article  CAS  PubMed  Google Scholar 

  43. Brown HC, Zakas PM, George SN, Parker ET, Spencer HT, Doering CB. Target-cell-directed bioengineering approaches for gene therapy of hemophilia A. Mol Ther Methods Clin Dev. 2018;9:57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, Geuna M, et al. CD38 molecule: structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol. 1990;145:878–84.

    CAS  PubMed  Google Scholar 

  45. Chaturvedi V, Marsh RA, Lorenz AZ, Owsley E, Chaturvedi V, Nguyen T, et al. T cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis. Blood 2021;137:2337–46.

  46. Shubinsky G, Schlesinger M. The CD38 lymphocyte differentiation marker: new insight into its ectoenzymatic activity and its role as a signal transducer. Immunity. 1997;7:315–24.

    Article  CAS  PubMed  Google Scholar 

  47. Huang G, Yu L, Cooper LJ, Hollomon M, Huls H, Kleinerman ES. Genetically modified T cells targeting interleukin-11 receptor alpha-chain kill human osteosarcoma cells and induce the regression of established osteosarcoma lung metastases. Cancer Res. 2012;72:271–81.

    Article  CAS  PubMed  Google Scholar 

  48. Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 2004;64:9160–6.

    Article  CAS  PubMed  Google Scholar 

  49. Han X, Cinay GE, Zhao Y, Guo Y, Zhang X, Wang P. Adnectin-based design of chimeric antigen receptor for T cell engineering. Mol Ther. 2017;25:2466–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perales-Puchalt A, Svoronos N, Rutkowski MR, Allegrezza MJ, Tesone AJ, Payne KK, et al. Follicle-stimulating hormone receptor is expressed by most ovarian cancer subtypes and is a safe and effective immunotherapeutic target. Clin Cancer Res. 2017;23:441–53.

    Article  CAS  PubMed  Google Scholar 

  51. Nakazawa Y, Matsuda K, Kurata T, Sueki A, Tanaka M, Sakashita K, et al. Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34(+) cells of juvenile myelomonocytic leukemia. J Hematol Oncol. 2016;9:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Mansson R, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007;1:671–84.

    Article  CAS  PubMed  Google Scholar 

  53. Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2:3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yogarajah M, Tefferi A. Leukemic transformation in myeloproliferative neoplasms: a literature review on risk, characteristics, and outcome. Mayo Clin Proc. 2017;92:1118–28.

    Article  CAS  PubMed  Google Scholar 

  55. Breems DA, Van Putten WL, Huijgens PC, Ossenkoppele GJ, Verhoef GE, Verdonck LF, et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol. 2005;23:1969–78.

    Article  PubMed  Google Scholar 

  56. Burnett AK, Goldstone A, Hills RK, Milligan D, Prentice A, Yin J, et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J Clin Oncol. 2013;31:1293–301.

    Article  PubMed  Google Scholar 

  57. Ganzel C, Sun Z, Cripe LD, Fernandez HF, Douer D, Rowe JM, et al. Very poor long-term survival in past and more recent studies for relapsed AML patients: the ECOG-ACRIN experience. Am J Hematol. 2018. https://doi.org/10.1002/ajh.25162.

  58. Zoine JT, Knight KA, Fleischer LC, Sutton KS, Goldsmith KC, Doering CB, et al. Ex vivo expanded patient-derived gammadelta T-cell immunotherapy enhances neuroblastoma tumor regression in a murine model. Oncoimmunology. 2019;8:1593804.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patel S, Burga RA, Powell AB, Chorvinsky EA, Hoq N, McCormack SE, et al. Beyond CAR T cells: other cell-based immunotherapeutic strategies against cancer. Front Oncol. 2019;9:196.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morsut L, Roybal Kole T, Xiong X, Gordley Russell M, Coyle Scott M, Thomson M, et al. Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell. 2016;164:780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NHLBI 1K08HL141635-01A1 and Atlanta Pediatric Scholars Program K12 Scholar supported by grant K12HD072245.

Author information

Authors and Affiliations

Authors

Contributions

JTZ designed research, performed research, collected data, analyzed/interpreted data, and wrote the manuscript; CZP, JYS, AML, AF, GMB, JYS, and CCP designed research, performed research, collected data, and analyzed/interpreted data. CBD, HTS, and SC designed research, analyzed/interpreted data and edited the manuscript.

Corresponding author

Correspondence to Shanmuganathan Chandrakasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoine, J.T., Prince, C., Story, J.Y. et al. Thrombopoietin-based CAR-T cells demonstrate in vitro and in vivo cytotoxicity to MPL positive acute myelogenous leukemia and hematopoietic stem cells. Gene Ther 29, 1–12 (2022). https://doi.org/10.1038/s41434-021-00283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00283-5

Search

Quick links