Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae

Abstract

Adeno-associated virus (AAV)-mediated gene delivery systems have been shown to be effective tools for gene manipulation in the inner ear. For example, hair cells (HCs) and multiple other cell types can be transduced by the local injection of AAVs into the inner ear. However, application of the AAV-mediated CRISPR/Cas9 gene-editing approach to the inner ear in adult mice has not yet been studied. Based on our previous work, we investigated several AAV serotypes in neonatal and adult mice in parallel, and found that AAV8 had the top efficiency to transduce inner HCs. We then tested the ability of Cre-expressing AAV8 to activate Cas9 in floxed-Cas9 knockin mice, and observed significant Cas9 activation in the inner ear of both neonatal and adult animals. Neither the AAV8 virus itself nor the surgical procedures used to deliver it—cochleostomy for neonatal mice and canalostomy for adult mice—caused any damage to HCs or impaired normal hearing. Our studies indicate that the local injection of AAV8-Cre can induce Cas9 activation to perform safe and efficient gene editing in the inner ear, expanding the repertoire of gene-editing tools for regulating gene expression in the inner ear as a part of efforts to rescue genetic hearing loss, initiate regeneration of HCs, or develop gene therapy techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AAV vectors transduced diverse inner ear cell types in neonatal cochlea.
Fig. 2: AAV vectors transduced inner hair cells in adult cochleae.
Fig. 3: Inner ear cell subtypes infected by AAV8-Cre injected in neonatal Cas9-KI mice.
Fig. 4: AAV transduction in neonatal and adult Cas9-KI mice did not impair normal hearing and IHCs.
Fig. 5: Inner ear cell subtypes infected by AAV8-Cre injected into adult Cas9-KI mice.
Fig. 6: AAV8-Cre activated Cas9 protein expression in the inner ear specifically.

Similar content being viewed by others

References

  1. Morton NE. Genetic epidemiology of hearing impairment. Ann NY Acad Sci. 1991;630:16–31.

    CAS  PubMed  Google Scholar 

  2. Emptoz A, Michel V, Lelli A, Akil O, Boutet de Monvel J, Lahlou G, et al. Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G. Proc Natl Acad Sci USA. 2017;114:9695–700.

    CAS  PubMed  Google Scholar 

  3. Dulon D, Papal S, Patni P, Cortese M, Vincent PF, Tertrais M, et al. Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. J Clin Investig. 2018;128:3382–401.

    PubMed  Google Scholar 

  4. Akil O, Dyka F, Calvet C, Emptoz A, Lahlou G, Nouaille S, et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci USA. 2019; https://doi.org/10.1073/pnas.1817537116.

  5. Husseman J, Raphael Y. Gene therapy in the inner ear using adenovirus vectors. Adv Otorhinolaryngol. 2009;66:37–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shu Y, Tao Y, Li W, Shen J, Wang Z, Chen ZY. Adenovirus vectors target several cell subtypes of mammalian inner ear in vivo. Neural Plast. 2016;2016:9409846.

    PubMed  PubMed Central  Google Scholar 

  7. Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y, Indzhykulian AA, et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol. 2017;35:264–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, et al. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med. 2015;7:295ra108.

    PubMed  PubMed Central  Google Scholar 

  9. Kilpatrick LA, Li Q, Yang J, Goddard JC, Fekete DM, Lang H. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther. 2011;18:569–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shibata SB, Di Pasquale G, Cortez SR, Chiorini JA, Raphael Y. Gene transfer using bovine adeno-associated virus in the guinea pig cochlea. Gene Ther. 2009;16:990–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Okada T, Nomoto T, Ke X, Kume A, Ozawa K, et al. Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo. Exp Mol Med. 2007;39:170–5.

    CAS  PubMed  Google Scholar 

  12. Iizuka T, Kanzaki S, Mochizuki H, Inoshita A, Narui Y, Furukawa M, et al. Noninvasive in vivo delivery of transgene via adeno-associated virus into supporting cells of the neonatal mouse cochlea. Hum Gene Ther. 2008;19:384–90.

    CAS  PubMed  Google Scholar 

  13. Bedrosian JC, Gratton MA, Brigande JV, Tang W, Landau J, Bennett J. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol Ther. 2006;14:328–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Okada T, Sheykholeslami K, Shimazaki K, Nomoto T, Muramatsu S, et al. Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther. 2005;12:725–33.

    CAS  PubMed  Google Scholar 

  15. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron. 2012;75:283–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lalwani AK, Walsh BJ, Reilly PG, Muzyczka N, Mhatre AN. Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther. 1996;3:588–92.

    CAS  PubMed  Google Scholar 

  17. Isgrig K, Shteamer JW, Belyantseva IA, Drummond MC, Fitzgerald TS, Vijayakumar S, et al. Gene therapy restores balance and auditory functions in a mouse model of usher syndrome. Mol Ther. 2017;25:780–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wenzel GI, Xia A, Funk E, Evans MB, Palmer DJ, Ng P, et al. Helper-dependent adenovirus-mediated gene transfer into the adult mouse cochlea. Otol Neurotol. 2007;28:1100–8.

    PubMed  Google Scholar 

  19. Chen X, Frisina RD, Bowers WJ, Frisina DR, Federoff HJ. HSV amplicon-mediated neurotrophin-3 expression protects murine spiral ganglion neurons from cisplatin-induced damage. Mol Ther. 2001;3:958–63.

    CAS  PubMed  Google Scholar 

  20. Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, et al. Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene Ther. 2016;27:687–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Landegger LD, Pan B, Askew C, Wassmer SJ, Gluck SD, Galvin A, et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol. 2017;35:280–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, et al. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med. 2015;7:1077–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep. 2017;7:45524.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fukui H, Raphael Y. Gene therapy for the inner ear. Hear Res. 2013;297:99–105.

    CAS  PubMed  Google Scholar 

  25. Stover T, Yagi M, Raphael Y. Cochlear gene transfer: round window versus cochleostomy inoculation. Hear Res. 1999;136:124–30.

    CAS  PubMed  Google Scholar 

  26. Tao Y, Huang M, Shu Y, Ruprecht A, Wang H, Tang Y, et al. Delivery of adeno-associated virus vectors in adult mammalian inner-ear cell subtypes without auditory dysfunction. Hum Gene Ther. 2018;29:492–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016;351:400–3.

    CAS  PubMed  Google Scholar 

  28. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34:334–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34:328–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553:217–21.

    CAS  PubMed  Google Scholar 

  31. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73–80.

    CAS  PubMed  Google Scholar 

  32. Gyorgy B, Nist-Lund C, Pan B, Asai Y, Karavitaki KD, Kleinstiver BP, et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med. 2019;25:1123–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Muller U, Barr-Gillespie PG. New treatment options for hearing loss. Nat Rev Drug Discov. 2015;14:346–65.

    CAS  PubMed  Google Scholar 

  35. Geleoc GS, Holt JR. Sound strategies for hearing restoration. Science. 2014;344:1241062.

    PubMed  PubMed Central  Google Scholar 

  36. Morton CC, Nance WE. Newborn hearing screening-a silent revolution. N Engl J Med. 2006;354:2151–64.

    CAS  PubMed  Google Scholar 

  37. Haith MM. Sensory and perceptual processes in early infancy. J Pediatr. 1986;109:158–71.

    CAS  PubMed  Google Scholar 

  38. Morsli H, Choo D, Ryan A, Johnson R, Wu DK. Development of the mouse inner ear and origin of its sensory organs. J Neurosci. 1998;18:3327–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bennett A, Patel S, Mietzsch M, Jose A, Lins-Austin B, Yu JC, et al. Thermal stability as a determinant of AAV serotype identity. Mol Ther Methods Clin Dev. 2017;6:171–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pacouret S, Bouzelha M, Shelke R, Andres-Mateos E, Xiao R, Maurer A, et al. AAV-ID: a rapid and robust assay for batch-to-batch consistency evaluation of AAV preparations. Mol Ther. 2017;25:1375–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP, et al. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci. 2004;5:4.

    PubMed  PubMed Central  Google Scholar 

  42. Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351:407–11.

    CAS  PubMed  Google Scholar 

  43. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA. 2003;100:6081–6.

    CAS  PubMed  Google Scholar 

  44. Huang M, Kantardzhieva A, Scheffer D, Liberman MC, Chen ZY. Hair cell overexpression of Islet1 reduces age-related and noise-induced hearing loss. J Neurosci. 2013;33:15086–94.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

HW was supported by the Key Project of National Natural Science Foundation of China (NSFC 81330023) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (SQ2017YFSF080012), Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases (14DZ2260300), and Innovative Research Team of High-level Local Universities in Shanghai. YT was supported by the National Natural Science Foundation of China (NSFC81800900), Shanghai Science and Technology Committee (18411953600, 18ZR1422100, and 18PJ1406900), Shanghai Municipal Health Commission (2018YQ59), and Shanghai Ninth People’s Hospital (QC201804). WZ was supported by National Natural Science Foundation of China (NSFC81700900).

Author information

Authors and Affiliations

Authors

Contributions

WK and XZ conducted the experiments, analyzed data, and wrote the paper; ZS, WZ, TD, LT, and CJ performed western blot and IVIS, assisted with experimental design, performed experiments, and analyzed data; YT and HW designed and supervised the research, and wrote the paper. All the authors edited the paper.

Corresponding authors

Correspondence to Yong Tao or Hao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Zhao, X., Sun, Z. et al. Adeno-associated virus vector enables safe and efficient Cas9 activation in neonatal and adult Cas9 knockin murine cochleae. Gene Ther 27, 392–405 (2020). https://doi.org/10.1038/s41434-020-0124-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0124-1

This article is cited by

Search

Quick links