Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology

Low serum 25-hydroxyvitamin D levels may increase the detrimental effect of VDR variants on the risk of essential hypertension

Abstract

Background/objectives

The present cross-sectional study evaluated the association of vitamin D receptor (VDR) variants with serum 25(OH)D3 levels and their interaction on essential hypertension (EH) risk.

Subjects/methods

1539 patients were eligible in the study population. Two loci in VDR gene (rs2239179, rs2189480) were genotyped by TaqMan probe assays. Logistic regression, Kruskal–Wallis rank test and Chi-square test were used to determine the association among VDR polymorphisms, serum vitamin D metabolites, and the risk of EH. Interaction plots were performed to explain the interaction effects of circulating 25(OH)D3 levels and VDR variants on EH susceptibility.

Results

After potential confounding adjustment, we observed that the mutations of VDR (rs2239179/rs2189480) were associated with the increased risk of EH (P < 0.05). Moreover, plasma 25(OH)D3 levels were inversely associated with EH, However, we did not find the association between serum 25(OH)D3 and VDR variants. When comparing with wild-type homozygous and heterozygous genotype carriers with vitamin D sufficiency, hypovitaminosis D and insufficient participants carrying homozygous variant genotype of rs2239179 showed a higher risk of EH, increased by 113% (OR = 2.13, 95% CI: 1.20, 3.80); Notably, the detrimental effect of rs2239179 homozygous variant on EH became stronger in the case of serum 25(OH)D3 <30 ng/ml. However, we did not find the interaction effect between rs2189480 variants and serum 25(OH)D3 levels on the risk of EH.

Conclusions

Our results suggested that the mutations of VDR may accelerate the progression of EH etiology, especially when suffering hypovitaminnosis D and insufficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram shows the screening process.
Fig. 2: General linear regression coefficient estimates of VDR variants (95% CI, recessive model for rs2239179 (GG/AG + AA), and under dominant model for rs2189480 (CA + CC/AA) on the risk of essential hypertension as a function of serum 25(OH)D3 levels.

Similar content being viewed by others

References

  1. Chen S. Essential hypertension: perspectives and future directions. J Hypertens. 2012;30:42–5. https://doi.org/10.1097/HJH.0b013e32834ee23c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO: Cardiovascular disease, World Health Organization; 2013. https://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/.

  3. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  Google Scholar 

  4. Legarth C, Grimm D, Wehland M, Bauer J, Krüger M. The impact of Vitamin D in the treatment of essential hypertension. Int J Mol Sci. 2018;19:455.

    Article  Google Scholar 

  5. Ke L, Mason RS, Mpofu E, Vingren JL, Li Y, Graubard BI, et al. Hypertension and other cardiovascular risk factors are associated with vitamin D deficiency in an urban Chinese population: a short report. J Steroid Biochem Mol Biol. 2017;173:286–91.

    Article  CAS  Google Scholar 

  6. McMullan CJ, Borgi L, Curhan GC, Fisher N, Forman JP. The effect of vitamin D on renin-angiotensin system activation and blood pressure: a randomized control trial. J Hypertens. 2017;35:822–9.

    Article  CAS  Google Scholar 

  7. Norman AW. The history of the discovery of Vitamin D and its daughter steroid hormone. Ann Nutr Metab. 2012;61:199–206.

    Article  CAS  Google Scholar 

  8. Smith CP, Hyppönen E, Chope G, Bucca G, Lambert H, Berry J, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95:1357–64.

    Article  Google Scholar 

  9. Brumbaugh PF, Haussler MR. 1α,25-dihydroxycholecalciferol receptors in intestine: I. association OF 1α,25-dihydroxycholecalciferol with intestinal mucosa chromatin. J Biol Chem. 1974;249:1251–7.

    CAS  PubMed  Google Scholar 

  10. Arnold AC, Gallagher PE, Diz DI. Brain renin-angiotensin system in the nexus of hypertension and aging. Hypertens Res. 2013;36:5–13.

    Article  CAS  Google Scholar 

  11. Li YC, Kong J, Wei M, Chen Z-F, Liu SQ, Cao L-P. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Investig. 2002;110:229–38.

    Article  CAS  Google Scholar 

  12. Jia J, Shen C, Mao L, Yang K, Men C, Zhan Y. Vitamin D receptor genetic polymorphism is significantly associated with decreased risk of hypertension in a Chinese Han population. J Clin Hypertens. 2014;16:634–9.

    Article  CAS  Google Scholar 

  13. Wang L, Ma J, Manson JE, Buring JE, Gaziano JM, Sesso HD. A prospective study of plasma vitamin D metabolites, vitamin D receptor gene polymorphisms, and risk of hypertension in men. Eur J Nutr. 2013;52:1771–9.

    Article  CAS  Google Scholar 

  14. Kim T-H, Lee H-H, Kim J-M, Hwang J-Y, Mun MJ. Relationship between preeclampsia, gestational hypertension, and vitamin D receptor (VDR) gene polymorphisms. Arch Gynecol Obstet. 2015;292:717–8.

    Article  Google Scholar 

  15. Rezavand N, Tabarok S, Rahimi Z, Vaisi-Raygani A, Mohammadi E, Rahimi Z. The effect of VDR gene polymorphisms and vitamin D level on blood pressure, risk of preeclampsia, gestational age, and body mass index. J Cell Biochem. 2019;120:6441–8.

    Article  CAS  Google Scholar 

  16. Frederick S, Yue H, Brenton K. Interplot: plot the effects of variables in interaction terms. R package version 0.2.1.2018. https://CRAN.R-project.org/package=interplot.

  17. Chen S, Sun Y, Agrawal DK. Vitamin D deficiency and essential hypertension. J Am Soc Hypertens. 2015;9:885–901.

    Article  CAS  Google Scholar 

  18. Rai V, Agrawal DK. Role of vitamin D in cardiovascular diseases. Endocrinol Metab Clin North Am. 2017;46:1039–59.

    Article  Google Scholar 

  19. Sun H, Long SR, Li X, Ge H, Liu X, Wang T, et al. Serum vitamin D deficiency and vitamin D receptor gene polymorphism are associated with increased risk of cardiovascular disease in a Chinese rural population. Nutr Res. 2019;61:13–21.

    Article  CAS  Google Scholar 

  20. Karonova T, Grineva E, Belyaeva O, Bystrova A, Jude EB, Andreeva A, et al. Relationship between vitamin D status and vitamin D receptor gene polymorphisms with markers of metabolic syndrome among adults. Front Endocrinol. 2018;9:448.

    Article  Google Scholar 

  21. Ke L, Graubard BI, Albanes D, Fraser DR, Weinstein SJ, Virtamo J, et al. Hypertension, pulse, and other cardiovascular risk factors and vitamin D status in Finnish men. Am J Hypertens. 2013;26:951–6.

    Article  CAS  Google Scholar 

  22. Wang Y, Yu F, Yu S, Zhang D, Wang J, Han H, et al. Triangular relationship between CYP2R1 gene polymorphism, serum 25(OH)D3 levels and T2DM in a Chinese rural population. Gene. 2018;678:172–6.

    Article  CAS  Google Scholar 

  23. Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet. 2005;42:737–48.

    Article  CAS  Google Scholar 

  24. Fitzsimons JT. Angiotensin stimulation of the central nervous system. In: Reviews of physiology, biochemistry and pharmacology, volume 87. Berlin, Heidelberg: Springer;1980. p. 117–67.

  25. Brunner HR, Laragh JH, Baer L, Newton MA, Goodwin FT, Krakoff LR, et al. Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med. 1972;286:441–9.

    Article  CAS  Google Scholar 

  26. Ni W, Watts SW, Ng M, Chen S, Glenn DJ, Gardner DG. Elimination of vitamin D receptor in vascular endothelial cells alters vascular function. Hypertension. 2014;64:1290–8.

    Article  CAS  Google Scholar 

  27. Vaidya A, Sun B, Forman JP, Hopkins PN, Brown NJ, Kolatkar NS, et al. The Fok1 vitamin D receptor gene polymorphism is associated with plasma renin activity in Caucasians. Clin Endocrinol. 2011;74:783–90.

    Article  CAS  Google Scholar 

  28. Cottone S, Guarino L, Arsena R, Scazzone C, Tornese F, Guarneri M, et al. Vitamin D receptor gene polymorphisms and plasma renin activity in essential hypertensive individuals. J Hum Hypertension. 2014;29:483.

    Article  Google Scholar 

  29. Margolis KL, Martin LW, Ray RM, Kerby TJ, Allison MA, Curb JD, et al. A prospective study of serum 25-hydroxyvitamin D levels, blood pressure, and incident hypertension in postmenopausal women. Am J Epidemiol. 2012;175:22–32.

    Article  Google Scholar 

  30. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–8.

    Article  CAS  Google Scholar 

  31. Kunutsor SK, Apekey TA, Steur M. Vitamin D and risk of future hypertension: meta-analysis of 283,537 participants. Eur J Epidemiol. 2013;28:205–21. https://doi.org/10.1007/s10654-013-9790-2.

    Article  CAS  PubMed  Google Scholar 

  32. Vaidya A, Williams JS. The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes. Metab Clin Exp. 2012;61:450–8.

    Article  CAS  Google Scholar 

  33. Carrara D, Bruno RM, Bacca A, Taddei S, Duranti E, Ghiadoni L, et al. Cholecalciferol treatment downregulates renin-angiotensin system and improves endothelial function in essential hypertensive patients with hypovitaminosid D. J Hypertens. 2016;34:2199–205.

    Article  CAS  Google Scholar 

  34. Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1α-hydroxylase knockout mice. Kidney Int. 2008;74:170–9.

    Article  CAS  Google Scholar 

  35. Yang D, Anderson PH, Wijenayaka AR, Barratt KR, Triliana R, Stapledon CJM, et al. Both ligand and VDR expression levels critically determine the effect of 1α,25-dihydroxyvitamin-D3 on osteoblast differentiation. J Steroid Biochem Mol Biol. 2018;177:83–90.

    Article  CAS  Google Scholar 

  36. Girgis CM, Mokbel N, Cha KM, Houweling PJ, Abboud M, Fraser DR, et al. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology. 2014;155:3227–37.

    Article  Google Scholar 

  37. Chen S, Glenn DJ, Ni W, Grigsby CL, Olsen K, Nishimoto M, et al. Expression of the vitamin d receptor is increased in the hypertrophic heart. Hypertension. 2008;52:1106–12.

    Article  CAS  Google Scholar 

  38. Batai K, Murphy AB, Shah E, Ruden M, Newsome J, Agate S, et al. Common vitamin D pathway gene variants reveal contrasting effects on serum vitamin D levels in African Americans and European Americans. Hum Genet. 2014;133:1395–405.

    Article  CAS  Google Scholar 

  39. Zhang Z, He J-W, Fu W-Z, Zhang C-Q, Zhang Z-L. An analysis of the association between the vitamin D pathway and serum 25-hydroxyvitamin D levels in a healthy Chinese population. J Bone Miner Res. 2013;28:1784–92.

    Article  CAS  Google Scholar 

  40. Khan H, Kunutsor S, Franco OH, Chowdhury R. Vitamin D, type 2 diabetes and other metabolic outcomes: a systematic review and meta-analysis of prospective studies. Proc Nutr Soc. 2012;72:89–97.

    Article  Google Scholar 

  41. Tosh AK, Belenchia AM, Hillman LS, Peterson CA. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: a randomized controlled trial. Am J Clin Nutr. 2013;97:774–81.

    Article  Google Scholar 

  42. Levin GP, Robinson-Cohen C, de Boer IH, Houston DK, Lohman K, Liu Y, et al. Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes. JAMA. 2012;308:1898–905.

    Article  CAS  Google Scholar 

  43. Vimaleswaran KS, Power C, Hyppönen E. Interaction between vitamin D receptor gene polymorphisms and 25-hydroxyvitamin D concentrations on metabolic and cardiovascular disease outcomes. Diabetes Metab. 2014;40:386–9.

    Article  CAS  Google Scholar 

  44. Xia S-l, Lin X-x, Guo M-d, Zhang D-g, Zheng S-z, Jiang L-j, et al. Association of vitamin D receptor gene polymorphisms and serum 25-hydroxyvitamin D levels with Crohn's disease in Chinese patients. J Gastroenterol Hepatol. 2016;31:795–801.

    Article  CAS  Google Scholar 

  45. Xia Z, Man Q, Li L, Song P, Jia S, Song S, et al. Vitamin D receptor gene polymorphisms modify the association of serum 25-hydroxyvitamin D levels with handgrip strength in the elderly in Northern China. Nutrition. 2019;57:202–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the supporters and applicants of this project.

Funding

XL and FS wrote the paper; YW and FY involved in genotyping; CG and XL contributed in dealing with data; FS, XL, and FY were responsible for collecting data; WL, YB, and CW reviewed this paper.

Author information

Authors and Affiliations

Authors

Contributions

This work was supported by the National Nature Science Foundation of China (grants number 81573151, 81872626, and 81573243), Science and Technology Foundation for Innovation Talent of Henan Province (No. 154200510010).

Corresponding authors

Correspondence to Wenjie Li or Xing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Guo, C., Wang, Y. et al. Low serum 25-hydroxyvitamin D levels may increase the detrimental effect of VDR variants on the risk of essential hypertension. Eur J Clin Nutr 74, 1091–1099 (2020). https://doi.org/10.1038/s41430-019-0543-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-019-0543-5

This article is cited by

Search

Quick links