Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Near-ambient pressure X-ray photoelectron spectroscopy for a bioinert polymer film at a water interface

Abstract

A better understanding of the aggregation states of polymers in contact with water is a pivotal issue for the development of highly functional polymer devices that work under water. As a direct experimental method to achieve the above, we used near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) on a poly(methyl methacrylate) (PMMA) film mixed with a small amount of a bottlebrush-type methacrylate polymer with oligo(2-ethyl-2-oxazoline) in its side chain portions, referred to as P[O(Ox)nMA], in a hydrated state. The results showed that P[O(Ox)nMA] was segregated at the surface of the PMMA film and suppressed the adhesion and activation of platelets on the film.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ratner BD, Weathersby PK, Hoffman AS. Radiation-grafted hydrogels for biomaterial applications as studied by the ESCA technique. J Appl Polym Sci. 1978;22:643–64.

    Article  CAS  Google Scholar 

  2. Andrade JD, Gregoins DE, Smith LM. Polymer surface dynamics. In: Andrade JD, editor. Surface and interfacial aspects chemistry and polymers. New York: Plenum Press; 1985. p. 15–41.

    Google Scholar 

  3. Lewis KB, Ratner BD. Observation of surface rearrangement of polymers using ESCA. J Colloid Interface Sci. 1993;159:85.

    Article  Google Scholar 

  4. Tateishi Y, Kai N, Noguchi H, Uosaki K, Nagamura T, Tanaka K. Local conformation of poly(methyl methacrylate) at nitrogen and water interfaces. Polym Chem. 2010;1:303–11.

    Article  CAS  Google Scholar 

  5. Horinouchi A, Atarashi H, Fujii Y, Tanaka K. Dynamics of waterinduced surface reorganization in poly(methyl methacrylate) films. Macromolecules. 2012;45:4638–42.

    Article  CAS  Google Scholar 

  6. Shundo A, Hori K, Ikeda T, Kimizuka N, Tanaka K. Design of a dynamic polymer interface for chiral discrimination. J Am Chem Soc. 2013;135:10282–5.

    Article  CAS  PubMed  Google Scholar 

  7. Oda Y, Horinouchi A, Kawaguchi D, Matsuno H, Kanaoka S, Aoshima S, et al. Effect of side-chain carbonyl groups on the interface of vinyl polymers with water. Langmuir. 2014;30:1215–9.

    Article  CAS  PubMed  Google Scholar 

  8. Paul DR, Barlow JW. Polymer blends. J Macromol Sci Rev Macromol Chem Phys. 1980;C18:109–68.

    Article  CAS  Google Scholar 

  9. Utracki LA, Wilkie C. Polymer blends handbook. Dordrecht: Springer; 2014.

    Book  Google Scholar 

  10. Carvalho JRG, Conde G, Antonioli ML, Dias PP, Vasconcelos RO, Taboga SR, et al. Biocompatibility and biodegradation of poly(lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polym J. 2020;52:629–43.

    Article  CAS  Google Scholar 

  11. Pan DHK, Prest WM. Surfaces of polymer blends: X-ray photoelectron spectroscopy studies of polystyrene/poly(vinyl methyl ether) blends. J Appl Phys. 1985;58:2861–70.

    Article  CAS  Google Scholar 

  12. Kawaguchi D, Tanaka K, Kajiyama T, Takahara A, Tasaki S. Surface composition control via chain end segregation in blend films of polystyrene and poly(vinyl methyl ether). Macromolecules. 2003;36:6824–30.

    Article  CAS  Google Scholar 

  13. Ucar IO, Doganci MD, Cansoy CE, Erbil HY, Avramova I, Suzer S. Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends. Appl Surf Sci. 2011;257:9587–94.

    Article  CAS  Google Scholar 

  14. Haraguchi M, Hirai T, Ozawa M, Miyaji K, Tanaka K. Hydrophobic acrylic hard coating by surface segregation of hyperbranched polymers. Appl Surf Sci. 2013;266:235–8.

    Article  CAS  Google Scholar 

  15. Teng CY, Sheng YJ, Tsao HK. Boundary-induced segregation in nanoscale thin films of athermal polymer blends. Soft Matter. 2016;12:4603–10.

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto K, Kawaguchi D, Abe T, Komino T, Mamada M, Kabe T, et al. Surface segregation of a star-shaped polyhedral oligomeric silsesquioxane in a polymer matrix. Langmuir. 2020;36:9960–6.

    Article  CAS  PubMed  Google Scholar 

  17. Hirata T, Matsuno H, Kawaguchi D, Hirai T, Yamada NL, Tanaka M, et al. Effect of local chain dynamics on a bioinert interface. Langmuir. 2015;31:3661–7.

    Article  CAS  PubMed  Google Scholar 

  18. Matsuno H, Tsukamoto R, Oda Y, Tanaka K. Platelet adhesion on the surface of a simple poly(vinyl ether). Polymer. 2017;116:479–86.

    Article  CAS  Google Scholar 

  19. Sugimoto S, Oda Y, Hirata T, Matsuyama R, Matsuno H, Tanaka K. Surface segregation of a branched polymer with hydrophilic poly[2-(2-ethoxy)ethoxyethylvinyl ether] side chains. Polym Chem. 2017;8:505–10.

    Article  CAS  Google Scholar 

  20. Oda Y, Inutsuka M, Awane R, Totani M, Yamada LN, Haraguchi M, et al. Dynamic interface based on segregation of an amphiphilic hyperbranched polymer containing fluoroalkyl and oligo(ethylene oxide) moieties. Macromolecules. 2020;53:2380–7.

    Article  CAS  Google Scholar 

  21. Yi J, Choe G, Park J, Lee JY. Graphene oxide-incorporated hydrogels for biomedical applications. Polym J. 2020;52:823–37.

    Article  CAS  Google Scholar 

  22. Hong JH, Totani M, Kawaguchi D, Yamada NL, Matsuno H, Tanaka K. Poly[oligo(2-ethyl-2-oxazoline) methacrylate] as a surface modifier for bioinertness. Polym J. 2021;53:643–53.

    Article  CAS  Google Scholar 

  23. Goto K, Teramoto Y. Development of chitinous nanofiber-based flexible composite hydrogels capable of cell adhesion and detachment. Polym J. 2020;52:959–67.

    Article  CAS  Google Scholar 

  24. Ruzette AV, Leibler L. Block copolymers in tomorrow’s plastics. Nat Mater. 2005;4:19–31.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka K, Kawaguchi D, Yokoe Y, Kajiyama T, Takahara A, Tasaki S. Surface segregation of chain ends in α,ω-fluoroalkylterminated polystyrenes films. Polymer. 2003;44:4171–7.

    Article  CAS  Google Scholar 

  26. Takahara A, Jo NJ, Kajiyama T. Surface molecular mobility and platelet reactivity of segmented poly(etherurethaneureas) with hydrophilic and hydrophobic soft segment components. J Biomater Sci, Polym Edn. 1989;1:17–29.

    Article  CAS  Google Scholar 

  27. Senshu K, Kobayashi M, Ikawa N, Yamashita S, Hirao A, Nakahama S. Relationship between morphology of microphaseseparated structure and phase restructuring at the surface of poly[2-hydroxyethyl methacrylate-block-4-(7′-octenyl)styrene] diblockcopolymers corresponding to environmental change. Langmuir. 1999;15:1763–9.

    Article  CAS  Google Scholar 

  28. Inutsuka M, Ito K, Yamada NL, Yokoyama H. High density polymer brush spontaneously formed by the segregation of amphiphilic diblock copolymers to polymer/water interface. ACS Macro Lett. 2013;2:265–8.

    Article  CAS  Google Scholar 

  29. Matsuno H, Tsukamoto R, Shimomura S, Hirai T, Oda Y, Tanaka K. Platelet-adhesion behavior synchronized with surface rearrangement in a film of poly(methyl methacrylate) terminated with elemental blocks. Polym J. 2016;48:413–9.

    Article  CAS  Google Scholar 

  30. Oda Y, Zhang C, Kawaguchi D, Matsuno H, Kanaoka S, Aoshima S, et al. Design of blood-compatible interfaces with poly (vinyl ether)s. Adv Mater Interface. 2016;3:1600034.

    Article  CAS  Google Scholar 

  31. Jiang J, Fu Y, Zhang Q, Zhan X, Chen F. Novel amphiphilic poly (dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property. Appl Surf Sci. 2017;412:1–9.

    Article  CAS  Google Scholar 

  32. Yi L, Xu K, Xia G, Li J, Li W, Cai Y. New protein-resistant surfaces of amphiphilic graft copolymers containing hydrophilic poly(ethylene glycol) and low surface energy fluorosiloxane sidechains. Appl Surf Sci. 2019;480:923–33.

    Article  CAS  Google Scholar 

  33. Hong JH, Totani M, Kawaguchi D, Masunaga H, Yamada NL, Matsuno H, et al. Design of a bioinert interface using an amphiphilic block copolymer containing a bottlebrush unit of oligo(oxazoline). ACS Appl Bio Mater. 2020;3:7363–8.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Liu Y, Qin Y, Huang Y, Chen K, Xiao C. Amphiphilic surface construction and properties of PVC-g-PPEGMA/ PTFEMA graft copolymer membrane. Appl Surf Sci. 2021;545:148985.

    Article  CAS  Google Scholar 

  35. Imato K, Nakajima H, Yamanaka R, Takeda N. Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polym J. 2021;53:355–62.

    Article  CAS  Google Scholar 

  36. Andrade JD. X-ray photoelectron spectroscopy (XPS). In: Andrade JD, editor. Surface and interfacial aspects chemistry and polymers. New York: Plenum Press; 1985. p. 105–95.

    Google Scholar 

  37. Briggs D. Chapter 3, Information from polymer XPS. In: Briggs D, editor. Surface analysis of polymers by XPS and static SIMS. Cambridge: Cambridge University Press; 1998. p. 47–87.

    Chapter  Google Scholar 

  38. Ishihara K, Yanokuchi S, Fukazawa K, Inoue Y. Photoinduced self-initiated graft polymerization of methacrylate monomers on poly(ether ether ketone) substrates and surface parameters for controlling cell adhesion. Polym J. 2020;52:731–41.

    Article  CAS  Google Scholar 

  39. Ogletree DF, Bluhm H, Lebedev G, Fadley CS. A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev Sci Instrum. 2002;73:3872–7.

    Article  CAS  Google Scholar 

  40. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science. 2008;322:932–4.

    Article  CAS  PubMed  Google Scholar 

  41. Miller DJ, Öberg H, Kaya S, Sanchez Casalongue H, Friebel D, Anniyev T, et al. Oxidation of Pt(111) under near-ambient conditions. Phys Rev Lett. 2011;107:195502.

    Article  CAS  PubMed  Google Scholar 

  42. Arrigo R, Hävecker M, Schuster ME, Ranjan C, Knop-Gericke A, Stotz E, et al. In situ study of the gas-phase electrolysis of water on platinum by NAP-XPS. Angew. Chem Int Ed. 2013;52:11660–4.

    Article  CAS  Google Scholar 

  43. Jackman MJ, Thomas AG, Muryn C. Photoelectron spectroscopy study of stoichiometric and reduced anatase TiO2(101) surfaces: the effect of subsurface defects on water adsorption at nearambient pressures. J Phys Chem C. 2015;119:13682–90.

    Article  CAS  Google Scholar 

  44. Pereira-Hernández XI, DeLaRiva A, Muravev V, Kunwar D, Xiong H, Sudduth B, et al. Tuning Pt-CeO2 interactions by hightemperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat Comm. 2019;10:1358.

    Article  CAS  Google Scholar 

  45. Dietrich PM, Bahr S, Yamamoto T, Meyer M, Thissen A. Chemical surface analysis on materials and devices under functional conditions—environmental photoelectron spectroscopy as nondestructive tool for routine characterization. J Electron Spectrosc Relat Phenom. 2019;231:118–26.

    Article  CAS  Google Scholar 

  46. Jain V, Wheeler JJ, Ess DH, Noack S, Vacogne CD, Schlaad H, et al. Poly(γ-benzyl L-glutamate), by near-ambient pressure XPS. Surf Sci Spectra. 2019;26:024010.

    Article  Google Scholar 

  47. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1747.

    Article  Google Scholar 

  48. Pape PG. Coupling agents, silanes (adhesion promoters). In: Salomone JC, editor. Polymeric materials encyclopedia. Boca Raton: CRC Press; 1996. p. 7636–9.

    Google Scholar 

  49. Tanaka M, Motomura T, Kawada M, Anzai T, Kasori Y, Shiroya T, et al. Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)—relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials. 2000;21:1471–81.

    Article  CAS  PubMed  Google Scholar 

  50. Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, et al. Poly(2-oxazoline)s based biomaterials: a comprehensive and critical update. Biomaterials. 2018;178:204–80.

    Article  CAS  PubMed  Google Scholar 

  51. Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (co) polymers: an overview of their design, solution properties, surfacechemistries and application. Prog Polym Sci. 2020;106:101252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Samir Mammadov from SPECS Surface Nano Analysis GmbH for fruitful discussions, especially concerning the NAP-XPS analysis. We wish to express our gratitude for the support from the JST-Mirai Program (JPMJMI18A2) (KT), JSPS KAKENHI Grant-in-Aids for Scientific Research (B) (JP20H02790) (KT) and (B) (JP18H02037) (HM), and for Early-Career Scientists (JP18K16990) (MT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hisao Matsuno or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, JH., Totani, M., Yamamoto, T. et al. Near-ambient pressure X-ray photoelectron spectroscopy for a bioinert polymer film at a water interface. Polym J 53, 907–912 (2021). https://doi.org/10.1038/s41428-021-00485-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00485-z

This article is cited by

Search

Quick links