Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characterization of 3D matrix conditions for cancer cell migration with elasticity/porosity-independent tunable microfiber gels

Abstract

The mechanics and architectures of the extracellular matrix (ECM) critically influence 3D cell migration processes, such as cancer cell invasion and metastasis. Understanding the roles of mechanical and structural factors in the ECM could provide an essential basis for cancer treatment. However, it is generally difficult to independently characterize these roles due to the coupled changes in these factors in conventional ECM model systems. In this study, to solve this problem, we developed elasticity/porosity-tunable electrospun fibrous gel matrices composed of photocrosslinked gelatinous microfibers (nanometer-scale-crosslinked chemical gels) with well-regulated bonding (tens-of-micron-scale fiber-bonded gels). This system enables independent modulation of microscopic fiber elasticity and matrix porosity, i.e., the mechanical and structural conditions of the ECM. The elasticity of fibers was tuned with photocrosslinking conditions. The porosity was regulated by changing the degree of interfiber bonding. The influences of these factors of the fibrous gel matrix on the motility of MDA-MB-231 tumorigenic cells and MCF-10A nontumorigenic cells were quantitatively investigated. MDA-MB-231 cells showed the highest degree of MMP-independent invasion into the matrix composed of fibers with a Young’s modulus of 20 kPa and a low degree of interfiber bonding, while MCF-10A cells did not show invasive behavior under the same matrix conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. DeVita VT, Lawrence TS, Rosenberg ED. Cancer: principles & practice of oncology: primer of the molecular biology of cancer. Philadephia: Lippincott Wiliams & Wilkins; 2012.

    Google Scholar 

  2. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat. 1995;154:8–20.

    CAS  PubMed  Google Scholar 

  3. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. Arch Otolaryngol - Head Neck Surg. 2003;112:1776–84.

    CAS  Google Scholar 

  4. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119:1420–8.

    CAS  PubMed  Google Scholar 

  5. Mierke CT, Frey B, Fellner M, Herrmann M, Fabry B. Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci. 2011;124:369–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fischer T, Wilharm N, Hayn A, Mierke CT. Matrix and cellular mechanical properties are the driving factors for facilitating human cancer cell motility into 3D engineered matrices. Converg Sci Phys Oncol. 2017;3:044003.

    Google Scholar 

  7. Anseth KS, Schwartz MP, Witze ES, Nguyen EH, Ahn NG, Sharma Y, et al. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype. PLoS ONE. 2013;8:e81689

    PubMed  PubMed Central  Google Scholar 

  8. Bray D. Cell movements: from molecules to motility. New York: Garland Science; 2001.

    Google Scholar 

  9. Lange JR, Fabry B. Cell and tissue mechanics in cell migration. Exp Cell Res. 2013;319:2418–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell. 2017;28:1833–46.

    PubMed  PubMed Central  Google Scholar 

  11. Shan J, Chi Q, Wang H, Huang Q, Yang L, Yu G, et al. Mechanosensing of cells in 3D gel matrices based on natural and synthetic materials. Cell Biol Int.2014;38:1233–43.

    CAS  PubMed  Google Scholar 

  12. Lee JY, Chaudhuri O. Regulation of breast cancer progression by extracellular matrix mechanics: insights from 3D culture models. ACS Biomater Sci Eng. 2018;4:302–13.

    CAS  Google Scholar 

  13. Soman P, Kelber JA, Lee JW, Wright TN, Vecchio KS, Klemke RL, et al. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials. 2012;33:7064–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater.2015;14:1262–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kursad, T. Extracellular matrix for tissue engineering and biomaterials. Cham, Switzerland: Springer International Publishing AG, part of Springer Nature; 2018.

  16. Peter, F. Collagen structure and mechanics. Berlin/Heidelberg, Germany: Springer Science+Business Media, LLC; 2008.

  17. Kidoaki S, Matsuda T. Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol. 2008;133:225–30.

    CAS  PubMed  Google Scholar 

  18. Hertz H. Über die Berührung fester elastischer Körper. J für die reine und Angew Math. 1881;171:156–71.

    Google Scholar 

  19. Radmacher M, Fritz M, Hansma PK. Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J. 1995;69:264–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu HW, Kuhn T, Moy VT. Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning. 1998;20:389–97.

    CAS  PubMed  Google Scholar 

  21. Nishino N, Powers JC. Peptide hydroxamic acids as inhibitors of thermolysin. Biochemistry. 1978;17:2846–50.

    CAS  PubMed  Google Scholar 

  22. Kidoaki S, Kwon IK, Matsuda T. Structural features and mechanical properties of in situ-bonded meshes of segmented polyurethane electrospun from mixed solvents. J Biomed Mater Res—Part B Appl Biomater. 2006;76:219–29.

    PubMed  Google Scholar 

  23. Parekh A, Weaver AM. Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adhes Migr. 2009;3:288–92.

    Google Scholar 

  24. Parekh A, Weaver AM. Regulation of invadopodia by mechanical signaling. Exp Cell Res. 2016;343:89–95.

    CAS  PubMed  Google Scholar 

  25. Kraning-Rush CM, Califano JP, Reinhart-King CA. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE. 2012;7:e32572.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Haage A, Schneider IC. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB J. 2014;28:3589–99.

    CAS  PubMed  Google Scholar 

  27. Rath N, Olson MF. Regulation of pancreatic cancer aggressiveness by stromal stiffening. Nat Med. 2016;22:462–3.

    CAS  PubMed  Google Scholar 

  28. Johnson AR, Pavlovsky AG, Ortwine DF, Prior F, Man CF, Bornemeier DA, et al. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J Biol Chem.2007;282:27781–91.

    CAS  PubMed  Google Scholar 

  29. Devy L, Huang L, Naa L, Yanamandra N, Pieters H, Frans N, et al. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res. 2009;69:1517–26.

    CAS  PubMed  Google Scholar 

  30. Wolf K, Friedl P. Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis. 2009;26:289–98.

    CAS  PubMed  Google Scholar 

  31. Pathak A, Kumar S. Biophysical regulation of tumor cell invasion: Moving beyond matrix stiffness. Integr Biol. 2011;3:267–78.

    CAS  Google Scholar 

  32. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol. 2006;16:1515–23.

    CAS  PubMed  Google Scholar 

  33. Wolf K, te Lindert M, Krause M, Alexander S, te Riet J, Willis AL, et al. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol.2013;201:1069–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Davidson PM, Denais C, Bakshi MC, Lammerding J. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. Cell Mol Bioeng. 2014;7:293–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lautscham LA, Kämmerer C, Lange JR, Kolb T, Mark C, Schilling A. et al. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness. Biophys J. 2015;109:900–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nandakumar V, Kelbauskas L, Hernandez KF, Lintecum KM, Senechal P, Bussey KJ, et al. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations. PLoS ONE. 2012;7:e29230.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus-independent cancer cell invasion programs: Three-dimensional amoeboid movement revisited. J Cell Biol. 2009;185:11–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Friedl P, Wolf K, Lammerding J. Nuclear mechanics during cell migration. Curr Opin Cell Biol. 2011;23:55–64.

    CAS  PubMed  Google Scholar 

  39. Giannone G, Sheetz MP. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 2006;16:213–23.

    CAS  PubMed  Google Scholar 

  40. Mierke CT, Kollmannsberger P, Zitterbart DP, Smith J, Fabry B, Goldmann WH. Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J. 2008;94:661–70.

    CAS  PubMed  Google Scholar 

  41. Mierke CT, Zitterbart DP, Goldmann WH, Koch TM, Fabry B, Kollmannsberger P, et al. Vinculin Facilitates Cell Invasion into Three-dimensional Collagen Matrices. J Biol Chem.2010;285:13121–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang C, Tong X, Yang F. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using peg-based hydrogels. Mol Pharm. 2014;11:2115–25.

    CAS  PubMed  Google Scholar 

  43. Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ. Decoupling substrate stiffness, spread area, and micropost density: A close spatial relationship between traction forces and focal adhesions. Biophys J. 2012;103:640–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010;188:11–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Parekh A, Ruppender NS, Branch KM, Sewell-Loftin MK, Lin J, Boyer PD, et al. Sensing and modulation of invadopodia across a wide range of rigidities. Biophys J.2011;100:573–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo WH, Frey MT, Burnham NA, Wang YL. Substrate rigidity regulates the formation and maintenance of tissues. Biophys J. 2006;90:2213–20.

    CAS  PubMed  Google Scholar 

  47. Mak M, Spill F, Kamm RD, Zaman MH. Single-cell migration in complex microenvironments: mechanics and signaling dynamics. J Biomech Eng. 2016;138:021004.

    PubMed  Google Scholar 

  48. Tocco VJ, Li Y, Christopher KG, Matthews JH, Aggarwal V, Paschall L, et al. The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells. J Cell Physiol.2018;233:1446–54.

    CAS  PubMed  Google Scholar 

  49. Denais C, Lammerding J. Nuclear mechanics in cancer. Adv Exp Med Biol. 2014;773:435–70.

    PubMed  PubMed Central  Google Scholar 

  50. Lee MH, Wu PH, Staunton JR, Ros R, Longmore GD, Wirtz D. Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys J. 2012;102:2731–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J.2005;88:3689–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Suresh S. Biomechanics and biophysics of cancer cells. Acta Mater. 2007;55:3989–4014.

    CAS  Google Scholar 

  53. Corbin EA, Kong F, Lim CT, King WP, Bashir R. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab Chip. 2015;15:839–47.

    CAS  PubMed  Google Scholar 

  54. Sapudom J, Rubner S, Martin S, Kurth T, Riedel S, Mierke CT, et al. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials. 2015;52:367–75.

    CAS  PubMed  Google Scholar 

  55. Mukherjee A, Behkam B, Nain AS. Cancer cells sense fibers by coiling on them in a curvature-dependent manner. iScience. 2019;19:905–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Eslami Amirabadi H., SahebAli S, Frimat JP, Luttge R, den Toonder JMJ. A novel method to understand tumor cell invasion: integrating extracellular matrix mimicking layers in microfluidic chips by “selective curing”. Biomed. Microdevices. 2017;19:92.

  57. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60:24–34.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by a Grant-in-Aid for Scientific Research (15K12513) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and a grant for Core Research for Evolutionary Medical Science and Technology from the Japan Agency of Medical Research and Development (AMED-CREST, JP19gm0810002).

Author information

Authors and Affiliations

Authors

Contributions

SK developed the idea for the study; DH, YN and AO performed the research and analyzed the data; and SK and DH wrote and revised the paper. All authors gave final approval for publication.

Corresponding author

Correspondence to Satoru Kidoaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Nakamura, Y., Ogata, A. et al. Characterization of 3D matrix conditions for cancer cell migration with elasticity/porosity-independent tunable microfiber gels. Polym J 52, 333–344 (2020). https://doi.org/10.1038/s41428-019-0283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0283-3

Search

Quick links