Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival

Abstract

Background

Angiogenin is a multifunctional secreted ribonuclease that is upregulated in human cancers and downregulated or mutationally inactivated in neurodegenerative diseases. A role for angiogenin in glioblastoma was inferred from the inverse correlation of angiogenin expression with patient survival but had not been experimentally investigated.

Methods

Angiogenin knockout mice were generated and the effect of angiogenin deficiency on glioblastoma progression was examined. Angiogenin and plexin-B2 genes were knocked down in glioblastoma cells and the changes in cell proliferation, invasion and vascular association were examined. Monoclonal antibodies of angiogenin and small molecules were used to assess the therapeutic activity of the angiogenin-plexin-B2 pathway in both genetic and xenograft animal models.

Results

Deletion of Ang1 gene prolonged survival of PDGF-induced glioblastoma in mice in the Ink4a/Arf−/−:Pten−/− background, accompanied by decreased invasion, vascular association and proliferation. Angiogenin upregulated MMP9 and CD24 leading to enhanced invasion and vascular association. Inhibition of angiogenin or plexin-B2, either by shRNA, monoclonal antibody or small molecule inhibitor, decreases sphere formation of patient-derived glioma stem cells, reduces glioblastoma proliferation and invasion and inhibits glioblastoma growth in both genetic and xenograft animal models.

Conclusions

Angiogenin and its receptor, plexin-B2, are a pair of novel regulators that mediate invasion, vascular association and proliferation of glioblastoma cells. Inhibitors of the angiogenin-plexin-B2 axis have therapeutic potential against glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ang1 deficiency enhanced survival and decreased progression of PDGF-induced GBM mice.
Fig. 2: ANG regulates self-renewal of GSCs and proliferation of GBM cells.
Fig. 3: ANG promotes GBM invasion through upregulation of MMP9.
Fig. 4: ANG enhances association GBM cells to vasculature through upregulation of CD24.
Fig. 5: PLXNB2 mediates formation GSC spheres, proliferation, apoptosis and invasion of GBM cells.
Fig. 6: Effect of PLXNB2 knockdown on xenograft growth of GBM cells in athymic mice.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study. All data generated or analysed during this study are included in this published article and in its supplementary information files.

References

  1. Marx JL. The 23-million-dollar quest pays off. Science. 1985;230:161.

    Article  CAS  PubMed  Google Scholar 

  2. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry. 1985;24:5480–6.

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian V, Feng Y. A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum Mol Genet. 2007;16:1445–53.

    Article  CAS  PubMed  Google Scholar 

  4. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4:269–73.

    Article  CAS  PubMed  Google Scholar 

  5. Silberstein L, Goncalves KA, Kharchenko PV, Turcotte R, Kfoury Y, Mercier F, et al. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell. 2016;19:530–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goncalves KA, Silberstein L, Li S, Severe N, Hu MG, Yang H, et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell. 2016;166:894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu W, Goncalves KA, Li S, Kishikawa H, Sun G, Yang H, et al. Plexin-B2 mediates physiologic and pathologic functions of angiogenin. Cell. 2017;171:849–64 e825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weiner HL, Weiner LH, Swain JL. Tissue distribution and developmental expression of the messenger RNA encoding angiogenin. Science. 1987;237:280–2.

    Article  CAS  PubMed  Google Scholar 

  9. Hu JL, Luo WJ, Wang H. Angiogenin upregulation independently predicts unfavorable overall survival in proneural subtype of glioblastoma. Technol Cancer Res Treat. 2019;18:1533033819846636.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eberle K, Oberpichler A, Trantakis C, Krupp W, Knupfer M, Tschesche H, et al. The expression of angiogenin in tissue samples of different brain tumours and cultured glioma cells. Anticancer Res. 2000;20:1679–84.

    CAS  PubMed  Google Scholar 

  11. van Es MA, Schelhaas HJ, van Vught PW, Ticozzi N, Andersen PM, Groen EJ, et al. Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann Neurol. 2011;70:964–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

    Article  CAS  PubMed  Google Scholar 

  13. Shinoura N, Shamraj OI, Hugenholz H, Zhu JG, McBlack P, Warnick R, et al. Identification and partial sequence of a cDNA that is differentially expressed in human brain tumors. Cancer Lett. 1995;89:215–21.

    Article  CAS  PubMed  Google Scholar 

  14. Saha B, Ypsilanti AR, Boutin C, Cremer H, Chedotal A. Plexin-B2 regulates the proliferation and migration of neuroblasts in the postnatal and adult subventricular zone. J Neurosci. 2012;32:16892–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le AP, Huang Y, Pingle SC, Kesari S, Wang H, Yong RL, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293–304.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, Tejero R, Lee VK, Brusco C, Hannah T, Bertucci TB, et al. Plexin-B2 facilitates glioblastoma infiltration by modulating cell biomechanics. Commun Biol. 2021;4:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Towner RA, Jensen RL, Vaillant B, Colman H, Saunders D, Giles CB, et al. Experimental validation of 5 in-silico predicted glioma biomarkers. Neuro Oncol. 2013;15:1625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Montana V, Sontheimer H. Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci. 2011;31:4858–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fett JW, Olson KA, Rybak SM. A monoclonal antibody to human angiogenin. Inhibition of ribonucleolytic and angiogenic activities and localization of the antigenic epitope. Biochemistry. 1994;33:5421–7.

    Article  CAS  PubMed  Google Scholar 

  20. Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27:2383–92.

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Yu W, Kishikawa H, Hu GF. Angiogenin prevents serum withdrawal-induced apoptosis of P19 embryonal carcinoma cells. FEBS J. 2010;277:3575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ibaragi S, Yoshioka N, Kishikawa H, Hu JK, Sadow PM, Li M, et al. Angiogenin-stimulated Ribosomal RNA transcription is essential for initiation and survival of AKT-induced prostate intraepithelial neoplasia. Mol Cancer Res. 2009;7:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sidaway P. CNS cancer: glioblastoma subtypes revisited. Nat Rev Clin Oncol. 2017;14:587.

    Article  PubMed  Google Scholar 

  24. Honma K, Miyata T, Ochiya T. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells. Cancer Cell Int. 2007;7:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hambardzumyan D, Amankulor NM, Helmy KY, Becher OJ, Holland EC. Modeling adult gliomas using RCAS/t-va technology. Transl Oncol. 2009;2:89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sheng J, Yu W, Gao X, Xu Z, Hu GF. Angiogenin stimulates ribosomal RNA transcription by epigenetic activation of the ribosomal DNA promoter. J Cell Physiol. 2014;229:521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu ZP, Tsuji T, Riordan JF, Hu GF. Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression. Biochemistry. 2003;42:121–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF. Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene. 2005;24:445–56.

    Article  CAS  PubMed  Google Scholar 

  29. Tsuji T, Sun Y, Kishimoto K, Olson KA, Liu S, Hirukawa S, et al. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res. 2005;65:1352–60.

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Hu MG, Sun Y, Yoshioka N, Ibaragi S, Sheng J, et al. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance. Mol Cancer Res. 2013;11:1203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirukawa S, Olson KA, Tsuji T, Hu GF. Neamine inhibits xenografic human tumor growth and angiogenesis in athymic mice. Clin Cancer Res. 2005;11:8745–52.

    Article  CAS  PubMed  Google Scholar 

  32. Ibaragi S, Yoshioka N, Li S, Hu MG, Hirukawa S, Sadow PM, et al. Neamine inhibits prostate cancer growth by suppressing angiogenin-mediated ribosomal RNA transcription. Clin Cancer Res. 2009;15:1981–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshioka N, Wang L, Kishimoto K, Tsuji T, Hu GF. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc Natl Acad Sci USA. 2006;103:14519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu S, Yu D, Xu ZP, Riordan JF, Hu GF. Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun. 2001;287:305–10.

    Article  CAS  PubMed  Google Scholar 

  35. Kim HM, Kang DK, Kim HY, Kang SS, Chang SI. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem Biophys Res Commun. 2007;352:509–13.

    Article  CAS  PubMed  Google Scholar 

  36. Trouillon R, Kang DK, Park H, Chang SI, O’Hare D. Angiogenin induces nitric oxide synthesis in endothelial cells through PI-3 and Akt kinases. Biochemistry. 2010;49:3282–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kieran D, Sebastia J, Greenway MJ, King MA, Connaughton D, Concannon CG, et al. Control of motoneuron survival by angiogenin. J Neurosci. 2008;28:14056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Steidinger TU, Slone SR, Ding H, Standaert DG, Yacoubian TA. Angiogenin in Parkinson disease models: role of Akt phosphorylation and evaluation of AAV-mediated angiogenin expression in MPTP treated mice. PLoS ONE. 2013;8:e56092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steidinger TU, Standaert DG, Yacoubian TA. A neuroprotective role for angiogenin in models of Parkinson’s disease. J Neurochem. 2011;116:334–41.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y, Xiao A, diPierro CG, Carpenter JE, Abdel-Fattah R, Redpath GT, et al. An extensive invasive intracranial human glioblastoma xenograft model: role of high level matrix metalloproteinase 9. Am J Pathol. 2010;176:3032–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer. 1999;79:1828–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG. Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene. 2009;28:3537–50.

    Article  CAS  PubMed  Google Scholar 

  43. Senner V, Sturm A, Baur I, Schrell UH, Distel L, Paulus W. CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol. 1999;58:795–802.

    Article  CAS  PubMed  Google Scholar 

  44. Deng J, Gao G, Wang L, Wang T, Yu J, Zhao Z. CD24 expression as a marker for predicting clinical outcome in human gliomas. J Biomed Biotechnol. 2012;2012:517172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Seano G, Jain RK. Vessel co-option in glioblastoma: emerging insights and opportunities. Angiogenesis. 2020;23:9–16.

    Article  PubMed  Google Scholar 

  46. Hu GF. Neomycin inhibits angiogenin-induced angiogenesis. Proc Natl Acad Sci USA. 1998;95:9791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baker GJ, Yadav VN, Motsch S, Koschmann C, Calinescu AA, Mineharu Y, et al. Mechanisms of glioma formation: iterative perivascular glioma growth and invasion leads to tumor progression, VEGF-independent vascularization, and resistance to antiangiogenic therapy. Neoplasia. 2014;16:543–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15:455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Winkler F, Kienast Y, Fuhrmann M, Von Baumgarten L, Burgold S, Mitteregger G, et al. Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia. 2009;57:1306–15.

    Article  PubMed  Google Scholar 

  50. Jadhav U, Chigurupati S, Lakka SS, Mohanam S. Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int J Oncol. 2004;25:1407–14.

    CAS  PubMed  Google Scholar 

  51. Pietras A, Katz AM, Ekstrom EJ, Wee B, Halliday JJ, Pitter KL, et al. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 2014;14:357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olson KA, Verselis SJ, Fett JW. Angiogenin is regulated in vivo as an acute phase protein. Biochem Biophys Res Commun. 1998;242:480–3.

    Article  CAS  PubMed  Google Scholar 

  53. Verselis SJ, Olson KA, Fett JW. Regulation of angiogenin expression in human HepG2 hepatoma cells by mediators of the acute-phase response. Biochem Biophys Res Commun. 1999;259:178–84.

    Article  CAS  PubMed  Google Scholar 

  54. Etoh T, Shibuta K, Barnard GF, Kitano S, Mori M. Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration. Clin Cancer Res. 2000;6:3545–51.

    CAS  PubMed  Google Scholar 

  55. Oikonomou KA, Kapsoritakis AN, Kapsoritaki AI, Manolakis AC, Tiaka EK, Tsiopoulos FD, et al. Angiogenin, angiopoietin-1, angiopoietin-2, and endostatin serum levels in inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:963–70.

    Article  PubMed  Google Scholar 

  56. Bai R, Sun D, Chen M, Shi X, Luo L, Yao Z, et al. Myeloid cells protect intestinal epithelial barrier integrity through the angiogenin/plexin-B2 axis. EMBO J. 2020;39:e103325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee SH, Kim KW, Joo K, Kim JC. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts. BMC Ophthalmol. 2016;16:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lee SH, Kim KW, Min KM, Kim KW, Chang SI, Kim JC. Angiogenin reduces immune inflammation via inhibition of TANK-binding kinase 1 expression in human corneal fibroblast cells. Mediators Inflamm. 2014;2014:861435.

    PubMed  PubMed Central  Google Scholar 

  59. Park J, Kim JT, Lee SJ, Kim JC. The anti-inflammatory effects of angiogenin in an endotoxin induced uveitis in rats. Int J Mol Sci. 2020;21:413.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank late Dr. Bert L. Vallee of Harvard Medical Scholl for support and guidance. We thank Dr. James F. Riordan of Harvard Medical Scholl for advice and discussion.

Funding

This work was supported in part by NIH grants R01CA105241, R01NS065237, R01HL135160 (G-FH), and Vertex Pharmaceuticals Inc.

Author information

Authors and Affiliations

Authors

Contributions

HY and G-FH developed the hypothesis, designed experiments, analysed the data and wrote the manuscript. HY, LY, SI, SL, NV, KAG, WY, HK, YJ, AJH and G-FH performed experiments. RS contributed to design and generation of Ang1 KO mice. HY, DJ, BC, EH and G-FH interpreted data. G-FH supervised the project. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Guo-fu Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yuan, L., Ibaragi, S. et al. Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. Br J Cancer 127, 422–435 (2022). https://doi.org/10.1038/s41416-022-01814-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01814-6

This article is cited by

Search

Quick links