Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parkin deficiency promotes liver cancer metastasis by TMEFF1 transcription activation via TGF-β/Smad2/3 pathway

Abstract

Parkin (PARK2) deficiency is frequently observed in various cancers and potentially promotes tumor progression. Here, we showed that Parkin expression is downregulated in liver cancer tissues, which correlates with poor patient survival. Parkin deficiency in liver cancer cells promotes migration and metastasis as well as changes in EMT and metastasis markers. A negative correlation exists between TMEFF1 and Parkin expression in liver cancer cells and tumor tissues. Parkin deficiency leads to upregulation of TMEFF1 which promotes migration and metastasis. TMEFF1 transcription is activated by Parkin-induced endogenous TGF-β production and subsequent phosphorylation of Smad2/3 and its binding to TMEFF1 promotor. TGF-β inhibitor and TMEFF1 knockdown can reverse shParkin-induced cell migration and changes of EMT markers. Parkin interacts with and promotes the ubiquitin-dependent degradation of HIF-1α/HIF-1β and p53, which accounts for the suppression of TGF-β production. Our data have revealed that Parkin deficiency in cancer leads to the activation of the TGF-β/Smad2/3 pathway, resulting in the expression of TMEFF1 which promotes cell migration, EMT, and metastasis in liver cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parkin deficiency promotes liver cancer metastasis.
Fig. 2: Parkin expression is negatively correlated with TMEFF1 expression.
Fig. 3: Parkin deficiency promotes liver cancer cell migration and metastasis via TMEFF1.
Fig. 4: Parkin deficiency promotes TMEFF1 transcription activation by TGF-β induction.
Fig. 5: TGF-β-upregulated TMEFF1 promotes cell migration.
Fig. 6: Parkin induces TGF-β through p53 and HIF-1α/HIF-1β.

Similar content being viewed by others

References

  1. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.

    Article  CAS  PubMed  Google Scholar 

  2. Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J. 2015;282:2076–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA. 2003;100:5956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poulogiannis G, McIntyre RE, Dimitriadi M, Apps JR, Wilson CH, Ichimura K, et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci USA. 2010;107:15145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T, et al. Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res. 2004;10:2720–4.

    Article  CAS  PubMed  Google Scholar 

  6. Denison SR, Wang F, Becker NA, Schüle B, Kock N, Phillips LA, et al. Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene. 2003;22:8370–8.

    Article  CAS  PubMed  Google Scholar 

  7. Yeo CW, Ng FS, Chai C, Tan JM, Koh GR, Chong YK, et al. Parkin pathway activation mitigates glioma cell proliferation and predicts patient survival. Cancer Res. 2012;72:2543–53.

    Article  CAS  PubMed  Google Scholar 

  8. Park KR, Yun JS, Park MH, Jung YY, Yeo IJ, Nam KT, et al. Loss of parkin reduces lung tumor development by blocking p21 degradation. PLoS One. 2019;14:e0217037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carroll RG, Hollville E, Martin SJ. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 2014;9:1538–53.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Zhang C, Zhao Y, Yue X, Wu H, Huang S, et al. Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression. Nat Commun. 2017;8:1823.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yeon M, Bertolini I, Agarwal E, Ghosh JC, Tang HY, Speicher DW, et al. Parkin ubiquitination of Kindlin-2 enables mitochondria-associated metastasis suppression. J Biol Chem. 2023;299:104774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li C, Zhang Y, Cheng X, Yuan H, Zhu S, Liu J, et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev Cell. 2018;46:441–55.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ding D, Ao X, Liu Y, Wang YY, Fa HG, Wang MY, et al. Post-translational modification of Parkin and its research progress in cancer. Cancer Commun. 2019;39:77.

    Article  Google Scholar 

  14. Sun X, Shu Y, Ye G, Wu C, Xu M, Gao R, et al. Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm Sin B. 2022;12:838–52.

    Article  PubMed  Google Scholar 

  15. Wang F, Denison S, Lai J-P, Philips LA, Montoya D, Kock N, et al. Parkin gene alterations in hepatocellular carcinoma. Genes Chromosomes Cancer. 2004;40:85–96.

    Article  CAS  PubMed  Google Scholar 

  16. Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y, et al. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene. 2008;27:6002–11.

    Article  CAS  PubMed  Google Scholar 

  17. Gery S, Yin D, Xie D, Black KL, Koeffler HP. TMEFF1 and brain tumors. Oncogene. 2003;22:2723–7.

    Article  CAS  PubMed  Google Scholar 

  18. Nie X, Gao L, Zheng M, Wang C, Wang S, Li X, et al. Overexpression of TMEFF1 in endometrial carcinoma and the mechanism underlying its promotion of malignant behavior in cancer cells. J Cancer. 2021;12:5772–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nie X, Liu C, Guo Q, Zheng MJ, Gao LL, Li X, et al. TMEFF1 overexpression and its mechanism for tumor promotion in ovarian cancer. Cancer Manag Res. 2019;11:839–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su Q, Fan M, Wang J, Ullah A, Ghauri MA, Dai B, et al. Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma. Cell Death Dis. 2019;10:939–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Su Q, Chen K, Wu Q, Ren J, Tang W, et al. Pyrimethamine upregulates BNIP3 to interfere SNARE-mediated autophagosome-lysosomal fusion in hepatocellular carcinoma. J Pharm Anal. 2024;14:211–24.

  22. Chen B, Zhao Y, Lin Z, Liang J, Fan J, Huang Y, et al. Apatinib and gamabufotalin co-loaded lipid/prussian blue nanoparticles for synergistic therapy to gastric cancer with metastasis. J Pharm Anal. 2024; in press. https://doi.org/10.1016/j.jpha.2023.11.011.

  23. Chen Y, Jiang H, Zhan Z, Lu J, Gu T, Yu P, et al. Oridonin restores hepatic lipid homeostasis in an LXRα-ATGL/EPT1 axis-dependent manner. J Pharm Anal. 2023;13:1281–95.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon Jaime A, Ferenc K, Kumar V, et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2023;52:174–82.

    Article  Google Scholar 

  25. Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E, Raheja R, et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet. 2014;46:588–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gong Y, Schumacher SE, Wu WH, Tang F, Beroukhim R, Chan TA. Pan-cancer analysis links PARK2 to BCL-XL-dependent control of apoptosis. Neoplasia. 2017;19:75–83.

    Article  CAS  PubMed  Google Scholar 

  27. Lee MH, Cho Y, Jung BC, Kim SH, Kang YW, Pan CH, et al. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells. Biochem Biophys Res Commun. 2015;464:63–9.

    Article  CAS  PubMed  Google Scholar 

  28. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, et al. Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet. 2010;42:77–82.

    Article  CAS  PubMed  Google Scholar 

  29. Wahabi K, Perwez A, Kamarudheen S, Bhat ZI, Mehta A, Rizvi MMA. Parkin gene mutations are not common, but its epigenetic inactivation is a frequent event and predicts poor survival in advanced breast cancer patients. BMC Cancer. 2019;19:820.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Noelker C, Schwake M, Balzer-Geldsetzer M, Bacher M, Popp J, Schlegel J, et al. Differentially expressed gene profile in the 6-hydroxy-dopamine-induced cell culture model of Parkinson’s disease. Neurosci Lett. 2012;507:10–5.

    Article  CAS  PubMed  Google Scholar 

  31. Eib DW, Holling TM, Zwijsen A, Dewulf N, de Groot E, van den Eijnden-van Raaij AJ, et al. Expression of the follistatin/EGF-containing transmembrane protein M7365 (tomoregulin-1) during mouse development. Mech Dev. 2000;97:167–71.

    Article  CAS  PubMed  Google Scholar 

  32. Moreno-Bueno G, Cubillo E, Sarrió D, Peinado H, Rodríguez-Pinilla SM, Villa S, et al. Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res. 2006;66:9543–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 81903643 and 82374095), the National Natural Science Foundation of Shaanxi Province (2024JC-YBQN-0891), the Shaanxi Province Science Fund for Distinguished Young Scholars (2023-JC-JQ-59), the Shaanxi Province Science and Technology Development Plan Project (2022ZDLSF05-05). We thank Dr. Wen-juan Tang for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

QS conceived and designed the experiments and acquired funding. JJW conducted literature search, and worked on the in vitro experiments, animal work, data collection and analysis. JYR, QW, KC, KHT, YZ, AS and XH were involved in animal data collection. SWL, MZ and WFD were involved in review and editing. YMZ is corresponding author, interpreted data and funding acquisition.

Corresponding author

Correspondence to Yan-min Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Wang, Jj., Ren, Jy. et al. Parkin deficiency promotes liver cancer metastasis by TMEFF1 transcription activation via TGF-β/Smad2/3 pathway. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01254-3

Keywords

Search

Quick links