Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1

Abstract

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 24 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1–6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures of representative targeted small-molecule agents for the treatment of mCRC, along with their respective target(s) given in brackets below.
Fig. 2
Scheme 1
Fig. 3: Biological evaluation of compound 4 in vitro.
Fig. 4: The effect of compound 4 on cell cycle arrest, apoptosis, and cellular senescence.
Fig. 5: Inhibitory effect of compound 4 on patient-derived CRC organoids.
Fig. 6: In vivo efficacy of compound 4 in a PDX xenograft model of CRC (n = 5 per group).
Fig. 7: Identification of AKT1 as the direct binding target of compound 4.
Fig. 8: Compound 4 inhibits CRC by targeting AKT1.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  3. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.

    Article  PubMed  Google Scholar 

  4. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17:79–92.

    Article  CAS  PubMed  Google Scholar 

  5. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Sig Transduct Target Ther. 2020;5:22.

    Article  CAS  Google Scholar 

  6. Cassidy S, Syed BA. Colorectal cancer drugs market. Nat Rev Drug Discov. 2017;16:525–6.

    Article  CAS  PubMed  Google Scholar 

  7. Deshmukh R, Prajapati M, Harwansh RK. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med Oncol. 2023;40:159.

    Article  PubMed  Google Scholar 

  8. Hoffmann H, Kogler H, Heyse W, Matter H, Caspers M, Schummer D, et al. Discovery, structure elucidation, and biological characterization of nannocystin A, a macrocyclic myxobacterial metabolite with potent antiproliferative properties. Angew Chem Int Ed. 2015;54:10145–8.

    Article  CAS  Google Scholar 

  9. Krastel P, Roggo S, Schirle M, Ross NT, Perruccio F, Aspesi P Jr, et al. Nannocystin A: an elongation factor 1 inhibitor from myxobacteria with differential anti-cancer properties. Angew Chem Int Ed. 2015;54:10149–54.

    Article  CAS  Google Scholar 

  10. Yang Z, Xu X, Yang CH, Tian Y, Chen X, Lian L, et al. Total synthesis of nannocystin A. Org Lett. 2016;18:5768–70.

    Article  CAS  PubMed  Google Scholar 

  11. Tian Y, Xu X, Ding Y, Hao X, Bai Y, Tang Y, et al. Synthesis and biological evaluation of nannocystin analogues toward understanding the binding role of the (2R,3S)-epoxide in nannocystin A. Eur J Med Chem. 2018;150:626–32.

    Article  CAS  PubMed  Google Scholar 

  12. Tian Y, Ding Y, Xu X, Bai Y, Tang Y, Hao X, et al. Total synthesis and biological evaluation of nannocystin analogues modified at the polyketide phenyl moiety. Tetrahedron Lett. 2018;59:3206–9.

    Article  CAS  Google Scholar 

  13. Tian Y, Wang J, Liu W, Yuan X, Tang Y, Li J, et al. Stereodivergent total synthesis of Br-nannocystins underpinning the polyketide (10R,11S) configuration as a key determinant of potency. J Mol Struct. 2019;1181:568–78.

    Article  CAS  Google Scholar 

  14. Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, et al. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem. 2023;14:299–312.

    Article  PubMed  Google Scholar 

  15. Meng Z, Souillart L, Monks B, Huwyler N, Herrmann J, Mueller R, et al. A “Motif-Oriented” total synthesis of nannocystin Ax. Preparation and biological assessment of analogues. J Org Chem. 2018;83:6977–94.

    Article  CAS  PubMed  Google Scholar 

  16. Miyakita D, Kawanishi K, Katsuyama A, Yamamoto K, Yakushiji F, Ichikawa S. Solid-phase synthesis of nannocystin Ax and its analogues. J Org Chem. 2023;88:11367–71.

    Article  CAS  PubMed  Google Scholar 

  17. Nomula R, Pratapure MS, Kontham R. Studies directed toward the total synthesis of nannocystin A. ChemistrySelect. 2022;7:e202203893.

    Article  CAS  Google Scholar 

  18. Liu Q, Yang X, Ji J, Zhang SL, He Y. Novel nannocystin A analogues as anticancer therapeutics: synthesis, biological evaluations and structure-activity relationship studies. Eur J Med Chem. 2019;170:99–111.

    Article  CAS  Google Scholar 

  19. Hou Y, Liu R, Xia M, Sun C, Zhong B, Yu J, et al. Nannocystin ax, an eEF1A inhibitor, induces G1 cell cycle arrest and caspase-independent apoptosis through cyclin D1 downregulation in colon cancer in vivo. Pharmacol Res. 2021;173:105870.

    Article  CAS  PubMed  Google Scholar 

  20. Sun C, Liu R, Xia M, Hou Y, Wang X, Lu JJ, et al. Nannocystin Ax, a natural elongation factor 1α inhibitor from Nannocystis sp., suppresses epithelial-mesenchymal transition, adhesion and migration in lung cancer cells. Toxicol Appl Pharmacol. 2021;420:115535.

    Article  CAS  PubMed  Google Scholar 

  21. Paul D, Das S, Saha S, Sharma H, Goswami RK. Intramolecular heck reaction in total synthesis of natural products: an update. Eur J Org Chem. 2021;2021:2057–76.

  22. Zhang W. Heck macrocyclization in natural product total synthesis. Nat Prod Rep. 2021;38:1109–35.

    Article  CAS  PubMed  Google Scholar 

  23. Cai J, Sun B, Yu S, Zhang H, Zhang W. Heck macrocyclization in forging non-natural large rings including macrocyclic drugs. Int J Mol Sci. 2023;24:8252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glaus F, Altmann KH. Total synthesis of the tiacumicin B (Lipiarmycin A3/Fidaxomicin) aglycone. Angew Chem Int Ed. 2015;54:1937–40.

    Article  CAS  Google Scholar 

  25. Shirokawa S-I, Kamiyama M, Nakamura T, Okada M, Nakazaki A, Hosokawa S, et al. Remote asymmetric induction with vinylketene silyl N,O-acetal. J Am Chem Soc. 2004;126:13604–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kalesse M, Cordes M, Symkenberg G, Lu HH. The vinylogous Mukaiyama aldol reaction (VMAR) in natural product synthesis. Nat Prod Rep. 2014;31:563–94.

    Article  CAS  PubMed  Google Scholar 

  27. Hosokawa S. Remote asymmetric induction reactions using a E,E-vinylketene silyl N,O-acetal and the wide range stereocontrol strategy for the synthesis of polypropionates. Acc Chem Res. 2018;51:1301–14.

    Article  CAS  PubMed  Google Scholar 

  28. Li LT, Jiang G, Chen Q, Zheng JN. Ki67 is a promising molecular target in the diagnosis of cancer. Mol Med Rep. 2015;11:1566–72.

    Article  CAS  PubMed  Google Scholar 

  29. Wickenden JA, Watson CJ. Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Res. 2010;12:202.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Thompson BJ. YAP/TAZ: drivers of tumor growth, metastasis, and resistance to therapy. Bioessays. 2020;42:1900162.

    Article  Google Scholar 

  31. Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paulin D, Lilienbaum A, Kardjian S, Agbulut O, Li Z. Vimentin: regulation and pathogenesis. Biochimie. 2022;197:96–112.

    Article  CAS  PubMed  Google Scholar 

  33. Cargnello M, Tcherkezian J, Roux PP. The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis. 2015;30:169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19:1997–2007.

    PubMed  PubMed Central  Google Scholar 

  35. Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20:4331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molina DM, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–7.

    Article  CAS  Google Scholar 

  37. Caballero IM, Lundgren S. A shift in thinking: cellular thermal shift assay-enabled drug discovery. ACS Med Chem Lett. 2023;14:369–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin R, Elf S, Shan C, Kang H-B, Ji Q, Zhou L, et al. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1–AMPK signalling. Nat Cell Biol. 2015;17:1484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9:1956–67.

    Article  CAS  PubMed  Google Scholar 

  40. Degan SE, Gelman IH. Emerging roles for AKT isoform preference in cancer progression pathways. Mol Cancer Res. 2021;19:1251–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doak BC, Over B, Giordanetto F, Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol. 2014;21:1115–42.

    Article  CAS  PubMed  Google Scholar 

  42. Doak BC, Zheng J, Dobritzsch D, Kihlberg J. How beyond rule of 5 drugs and clinical candidates bind to their targets. J Med Chem. 2016;59:2312–27.

    Article  CAS  PubMed  Google Scholar 

  43. Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016;101:42–61.

    Article  CAS  PubMed  Google Scholar 

  44. Poongavanam V, Doak BC, Kihlberg J. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. Curr Opin Chem Biol. 2018;44:23–9.

    Article  CAS  PubMed  Google Scholar 

  45. Tyagi M, Begnini F, Poongavanam V, Doak BC, Kihlberg J. Drug syntheses beyond the rule of 5. Chem Eur J. 2020;26:49–88.

    Article  CAS  PubMed  Google Scholar 

  46. Driggers EM, Hale SP, Lee J, Terrett NK. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat Rev Drug Discov. 2008;7:608–24.

    Article  CAS  PubMed  Google Scholar 

  47. Marsault E, Peterson ML. Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J Med Chem. 2011;54:1961–2004.

    Article  CAS  PubMed  Google Scholar 

  48. Giordanetto F, Kihlberg J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem. 2014;57:278–95.

    Article  CAS  PubMed  Google Scholar 

  49. Amrhein JA, Knapp S, Hanke T. Synthetic opportunities and challenges for macrocyclic kinase inhibitors. J Med Chem. 2021;64:7991–8009.

    Article  CAS  PubMed  Google Scholar 

  50. Garcia Jimenez D, Poongavanam V, Kihlberg J. Macrocycles in drug discovery─learning from the past for the future. J Med Chem. 2023;66:5377–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang W. From target-oriented to motif-oriented: a case study on nannocystin total synthesis. Molecules. 2020;25:5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao L, Zhou J, Xu Z, Ye T. Concise total synthesis of nannocystin A. Angew Chem Int Ed. 2016;55:13263–6.

  53. Zhang YH, Liu R, Liu B. Total synthesis of nannocystin Ax. Chem Commun. 2017;53:5549–52.

  54. Baker R, Castro JL. Total synthesis of (+)-macbecin I. J Chem Soc Perkin Trans 1. 1990:47–65.

  55. Menche D, Hassfeld J, Li J, Rudolph S. Total synthesis of archazolid A. J Am Chem Soc. 2007;129:6100–1.

    Article  CAS  PubMed  Google Scholar 

  56. Mailhol D, Willwacher J, Kausch-Busies N, Rubitski EE, Sobol Z, Schuler M, et al. Synthesis, molecular editing, and biological assessment of the potent cytotoxin leiodermatolide. J Am Chem Soc. 2014;136:15719–29.

    Article  CAS  PubMed  Google Scholar 

  57. Li X, Zeng X. Sequential trans-halogenation and Heck reaction for efficient access to dioxo-tetra-substituted 2,4 E,E-dienes: synthesis of segment C1-C6 of apoptolidin. Tetrahedron Lett. 2006;47:6839–42.

    Article  CAS  Google Scholar 

  58. Schmitt CA. Senescence, apoptosis and therapy—cutting the lifelines of cancer. Nat Rev Cancer. 2003;3:286–95.

    Article  CAS  PubMed  Google Scholar 

  59. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18:407–18.

    Article  CAS  PubMed  Google Scholar 

  60. Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 2017;24:1092–100.

    Article  CAS  PubMed  Google Scholar 

  61. Wensink GE, Elias SG, Mullenders J, Koopman M, Boj SF, Kranenburg OW, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precision Onc. 2021;5:30.

    Article  Google Scholar 

  62. Kopetz S, Lemos R, Powis G. The promise of patient-derived xenografts: the best laid plans of mice and men. Clin Cancer Res. 2012;18:5160–2.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goéré D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18:5314–28.

    Article  CAS  PubMed  Google Scholar 

  64. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46:372–83.

    Article  CAS  PubMed  Google Scholar 

  66. Mundi PS, Sachdev J, McCourt C, Kalinsky K. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol. 2016;82:943–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt in cancer for precision therapy. J Hematol Oncol. 2021;14:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang J, Chen L, Wu J, Ai D, Zhang JQ, Chen TG, et al. Targeting the PI3K/AKT/mTOR signaling pathway in the treatment of human diseases: current status, trends, and solutions. J Med Chem. 2022;65:16033–61.

    Article  CAS  PubMed  Google Scholar 

  69. Palmer AC, Kishony R. Opposing effects of target overexpression reveal drug mechanisms. Nat Commun. 2014;5:4296.

    Article  CAS  PubMed  Google Scholar 

  70. Roy R, Winteringham LN, Lassmann T, Forrest AR. Expression levels of therapeutic targets as indicators of sensitivity to targeted therapeutics. Mol Cancer Ther. 2019;18:2480–9.

    Article  CAS  PubMed  Google Scholar 

  71. Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug Discov. 2018;17:353–77.

    Article  CAS  PubMed  Google Scholar 

  72. Lu X, Smaill JB, Ding K. Medicinal chemistry strategies for the development of kinase inhibitors targeting point mutations. J Med Chem. 2020;63:10726–41.

    Article  CAS  PubMed  Google Scholar 

  73. Lu X, Smaill JB, Patterson AV, Ding K. Discovery of cysteine-targeting covalent protein kinase inhibitors. J Med Chem. 2022;65:58–83.

    Article  CAS  PubMed  Google Scholar 

  74. Amiri A, Noei F, Jeganathan S, Kulkarni G, Pinke DE, Lee JM. eEF1A2 activates Akt and stimulates Akt-dependent actin remodeling, invasion and migration. Oncogene. 2007;26:3027–40.

    Article  CAS  PubMed  Google Scholar 

  75. Xu C, Hu DM, Zhu Q. eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin Exp Metastasis. 2013;30:933–44.

    Article  PubMed  Google Scholar 

  76. Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, et al. EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatology. 2014;59:1886–99.

    Article  CAS  PubMed  Google Scholar 

  77. Qiu FN, Huang Y, Chen DY, Li F, Wu YA, Wu WB, et al. Eukaryotic elongation factor-1α2 knockdown inhibits hepatocarcinogenesis by suppressing PI3K/Akt/NF-κB signaling. World J Gastroenterol. 2016;22:4226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hassan MK, Kumar D, Patel SA, Pattanaik N, Mohapatra N, Dixit M. Expression pattern of EEF1A2 in brain tumors: histological analysis and functional role as a promoter of EMT. Life Sci. 2020;246:117399.

    Article  CAS  PubMed  Google Scholar 

  79. Yang J, Tang J, Li J, Cen Y, Chen J, Dai G. Effect of activation of the Akt/mTOR signaling pathway by EEF1A2 on the biological behavior of osteosarcoma. Ann Transl Med. 2021;9:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer small-molecule agents targeting eukaryotic elongation factor 1A: state of the art. Int J Mol Sci. 2023;24:5184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Potts MB, McMillan EA, Rosales TI, Kim HS, Ou Y-H, Toombs JE, et al. Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nat Chem Biol. 2015;11:401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu C, Wang L, Sun Y, Zhao X, Chen T, Su X, et al. Probe synthesis reveals eukaryotic translation elongation factor 1 alpha 1 as the anti-pancreatic cancer target of BE-43547A2. Angew Chem Int Ed. 2022;61:e202206953.

    Article  CAS  Google Scholar 

  83. Villadsen NL, Jacobsen KM, Keiding UB, Weibel ET, Christiansen B, Vosegaard T, et al. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products. Nat Chem. 2017;9:264–72.

    Article  CAS  PubMed  Google Scholar 

  84. Jacobsen KM, Villadsen NL, Toerring T, Nielsen CB, Salomon T, Nielsen MM, et al. APD-containing cyclolipodepsipeptides target mitochondrial function in hypoxic cancer cells. Cell Chem Biol. 2018;25:1337–49.

    Article  CAS  PubMed  Google Scholar 

  85. Frankowski KJ, Wang C, Patnaik S, Schoenen FJ, Southall N, Li D, et al. Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis. Sci Transl Med. 2018;10:eaap8307.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nepali K, Lee HY, Liou JP. Nitro-group-containing drugs. J Med Chem. 2019;62:2851–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was generously supported by the National Natural Science Foundation of China (NNSFC) (No. 21772101) to WCZ, the National Natural Science Foundation of China (NNSFC) (Nos. 81973356 and 82373906) to CLS, and the Fundamental Research Funds for the Central Universities in Nankai University (Nos. 63231108, ZB22010404, and 63221331) to CLS.

Author information

Authors and Affiliations

Authors

Contributions

WCZ and CLS designed the study. HZ, FX, XYY, YFT, XTD, MMS, SQY, JYC and BS performed the experiments. WCZ and CLS wrote the manuscript. HZ, FX, WCZ and CLS revised the manuscript. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Wei-cheng Zhang or Chang-liang Shan.

Ethics declarations

Competing interests

A patent on behalf of Nankai University has been filed.

Ethical approval

This study was carried out in accordance with the recommendations of Requirements of the Ethical Review System of Biomedical Research Involving Human by National Health and Family Planning Commission of China, Nankai University Laboratory Animal Welfare Ethics Review Committee (Approval No. 2023-SYDWLL-000066), Biomedical Ethics Committee of Nankai University (Ethics Document No. NKUIRB2023024), and Tianjin Central Hospital of Gynecology Obstetrics with written informed consent from all subjects. All subjects have been given a written informed consent in accordance with the Declaration of Helsinki.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xie, F., Yuan, Xy. et al. Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1. Acta Pharmacol Sin 45, 1044–1059 (2024). https://doi.org/10.1038/s41401-024-01231-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-024-01231-w

Keywords

Search

Quick links