Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating ATP-sensitive potassium channels

Abstract

Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson’s disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 μM and 6.159 μM, respectively. K-ATP channel blockers glibenclamide (50 μM) or 5-hydroxydecanoate (5-HD, 250 μM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg−1·d−1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 μM) than glibenclamide (KD = 24.32 μM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rotenone and baicalein activated K-ATP channels in vitro.
Fig. 2: K-ATP channels blockers abolished the effect of baicalein on preventing rotenone-induced mitochondrial disruption in SH-SY5Y cells.
Fig. 3: Baicalein inhibits rotenone-induced SH-SY5Y viability damage and apoptosis.
Fig. 4: Baicalein bound to SUR1 and reduced K-ATP channels response sensitivity to rotenone.
Fig. 5: Baicalein downregulated the overexpression of SUR1 induced by rotenone.
Fig. 6: SUR1 knockdown reversed the survival and apoptosis of SH-SY5Y cells by weakening IK-ATP.
Fig. 7: Diagram showing the proposed mechanisms of baicalein against Parkinson’s disease via regulating K-ATP channels.

Similar content being viewed by others

References

  1. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323:548–60.

    Article  PubMed  Google Scholar 

  2. Dorsey ER, Elbaz A, Nichols E, Abd-Allah F, Abdelalim A, C.Adsuar J, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–53.

    Article  Google Scholar 

  3. Vázquez-Vélez GE, Zoghbi HY. Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci. 2021;44:87–108.

    Article  PubMed  Google Scholar 

  4. Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson’s disease? Neurotoxicology. 2021;87:243–57.

    Article  CAS  PubMed  Google Scholar 

  5. Liu M, Liu C, Xiao X, Han SS, Bi MX, Jiao Q, et al. Role of upregulation of the K(ATP) channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson’s disease. Aging Cell. 2022;21:e13618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao S, Wang M, Ma Z. Therapeutic potential of ATP-sensitive potassium channels in Parkinson’s disease. Brain Res Bull. 2021;169:1–7.

    Article  CAS  PubMed  Google Scholar 

  7. Minami K, Miki T, Kadowaki T, Seino S. Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice. Diabetes. 2004;53:S176–80.

    Article  CAS  PubMed  Google Scholar 

  8. Yee AG, Freestone PS, Bai JZ, Lipski J. Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone. Exp Neurol. 2017;287:34–43.

    Article  CAS  PubMed  Google Scholar 

  9. Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 1999;18:833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, et al. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci. 2012;15:1272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han SS, Jiao Q, Bi MX, Du XX, Jiang H. The expression of K(ATP) channel subunits in alpha-synuclein-transfected MES23.5 cells. Ann Transl Med. 2018;6:170.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pang H, Xue W, Shi A, Li M, Li Y, Cao G, et al. Multiple-ascending-dose pharmacokinetics and safety evaluation of baicalein chewable tablets in healthy chinese volunteers. Clin Drug Investig. 2016;36:713–24.

    Article  CAS  PubMed  Google Scholar 

  13. Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E. Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor. Bioorg Med Chem. 2008;16:7516–24.

    Article  PubMed  Google Scholar 

  14. Tsai PL, Tsai TH. Pharmacokinetics of baicalin in rats and its interactions with cyclosporin A, quinidine and SKF-525A: a microdialysis study. Planta Med. 2004;70:1069–74.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Zhao J, Hölscher C. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs. 2017;31:639–52.

    Article  CAS  PubMed  Google Scholar 

  16. Rui W, Li S, Xiao H, Xiao M, Shi J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s disease. Int J Neuropsychopharmacol. 2020;23:762–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Wei N, Li X. Preclinical evidence and possible mechanisms of baicalein for rats and mice with Parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2020;12:277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sonawane SK, Uversky VN, Chinnathambi S. Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formation. Cell Commun Signal. 2021;19:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao X, Kong D, Zhou Q, Wei G, Song J, Liang Y, et al. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomed Pharmacother. 2021;140:111556.

    Article  CAS  PubMed  Google Scholar 

  20. Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X, et al. Baicalein mediates mitochondrial autophagy via miR-30b and the NIX/BNIP3 signaling pathway in Parkinson’s disease. Biochem Res Int. 2021;2021:2319412.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Song Q, Peng S, Zhu X. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson’s disease. Neurotoxicology. 2021;87:188–94.

    Article  CAS  PubMed  Google Scholar 

  22. Liu RZ, Zhang S, Zhang W, Zhao XY, Du GH. Baicalein attenuates brain iron accumulation through protecting aconitase 1 from oxidative stress in rotenone-induced Parkinson’s disease in Rats. Antioxidants (Basel). 2022;12:12.

    Article  PubMed  Google Scholar 

  23. Wang IC, Lin JH, Lee WS, Liu CH, Lin TY, Yang KT. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 2023;375:74–86.

    Article  PubMed  Google Scholar 

  24. Du X, Xu H, Shi L, Jiang Z, Song N, Jiang H, et al. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro. Sci Rep. 2016;6:33674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kampa RP, Sęk A, Bednarczyk P, Szewczyk A, Calderone V, Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J Pharm Pharmacol. 2023;75:466–81.

    Article  PubMed  Google Scholar 

  26. Zhang X, Du L, Zhang W, Yang Y, Zhou Q, Du G. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci Rep. 2017;7:9968.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Zheng X, Li W, Ren L, Li S, Yang Y, et al. Anti-tumor effects of Skp2 inhibitor AAA-237 on NSCLC by arresting cell cycle at G0/G1phase and inducing senescence. Pharmacol Res. 2022;181:106259.

    Article  CAS  PubMed  Google Scholar 

  28. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 2000;29:323–33.

    Article  CAS  PubMed  Google Scholar 

  29. Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, et al. Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. Elife. 2019;8:e46417.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bai Q, He J, Qiu J, Wang Y, Wang S, Xiu Y, et al. Rotenone induces KATP channel opening in PC12 cells in association with the expression of tyrosine hydroxylase. Oncol Rep. 2012;28:1376–84.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Shi L, Du X, Jiao Q, Jiang H. Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla. Brain Res Bull. 2017;134:151–61.

    Article  CAS  PubMed  Google Scholar 

  32. Wu C, Yang K, Liu Q, Wakui M, Jin GZ, Zhen X, et al. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology. 2010;59:567–72.

    Article  CAS  PubMed  Google Scholar 

  33. Xie J, Duan L, Qian X, Huang X, Ding J, Hu G. K(ATP) channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res. 2010;88:428–37.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Wu JY, Zhou F, Sun XL, Yao HH, Yang Y, et al. The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells. Neurosci Lett. 2006;394:131–5.

    Article  CAS  PubMed  Google Scholar 

  35. Fan Y, Kong H, Ye X, Ding J, Hu G. ATP-sensitive potassium channels: uncovering novel targets for treating depression. Brain Struct Funct. 2016;221:3111–22.

    Article  CAS  PubMed  Google Scholar 

  36. Yee AG, Lee SM, Hunter MR, Glass M, Freestone PS, Lipski J. Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. Neurotoxicology. 2014;45:1–11.

    Article  CAS  PubMed  Google Scholar 

  37. Lawson K. Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Investig Drugs. 2000;9:2269–80.

    Article  CAS  PubMed  Google Scholar 

  38. Lv J, Xiao X, Bi M, Tang T, Kong D, Diao M, et al. ATP-sensitive potassium channels: a double-edged sword in neurodegenerative diseases. Ageing Res Rev. 2022;80:101676.

    Article  CAS  PubMed  Google Scholar 

  39. Singh A, Tripathi P, Yadawa AK, Singh S. Promising polyphenols in Parkinson’s disease therapeutics. Neurochem Res. 2020;45:1731–45.

    Article  CAS  PubMed  Google Scholar 

  40. Alquisiras-Burgos I, Franco-Pérez J, Rubio-Osornio M, Aguilera P. The short form of the SUR1 and its functional implications in the damaged brain. Neural Regen Res. 2022;17:488–96.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Q, Li C, Zhang T, Ge Y, Han X, Sun S. Deletion of Kir6.2/SUR1 potassium channels rescues diminishing of DA neurons via decreasing iron accumulation in PD. Mol Cell Neurosci. 2018;92:164–76.

    Article  CAS  PubMed  Google Scholar 

  42. Chen MM, Hu ZL, Ding JH, Du RH, Hu G. Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson’s disease via astrocyte-neuron cross talk through complement C3-C3R signaling. Brain Behav Immun. 2021;95:310–20.

    Article  CAS  PubMed  Google Scholar 

  43. Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease via promoting mitophagy. Brain Behav Immun. 2019;81:509–22.

    Article  CAS  PubMed  Google Scholar 

  44. Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci. 2005;8:1742–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (7232258) and the CAMS Innovation Fund for Medical Sciences (Nos. 2021-I2M-1-005, 2022-I2M-JB-010).

Author information

Authors and Affiliations

Authors

Contributions

DWK performed most of the experiments, analyzed the data and wrote the draft. LDD and RZL assisted in animal experiments. TYY and SBW carried out the Western blotting. YHW and YL provided baicalein (98% purity, crystal β form). LHF and GHD designed the project and revised the draft.

Corresponding authors

Correspondence to Lian-hua Fang or Guan-hua Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Dw., Du, Ld., Liu, Rz. et al. Baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating ATP-sensitive potassium channels. Acta Pharmacol Sin 45, 480–489 (2024). https://doi.org/10.1038/s41401-023-01187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01187-3

Keyword

Search

Quick links