Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Consensus Statement
  • Published:

Pharmacogenomics, biomarker network, and allele frequencies in colorectal cancer

Abstract

Colorectal cancer is one of the leading causes of cancer death worldwide. Over the last decades, several studies have shown that tumor-related genomic alterations predict tumor prognosis, drug response, and toxicity. These observations have led to the development of several therapies based on individual genomic profiles. As part of these approaches, pharmacogenomics analyses genomic alterations which may predict an efficient therapeutic response. Studying these mutations as biomarkers for predicting drug response is of a great interest to improve precision medicine. We conduct a comprehensive review of the main pharmacogenomics biomarkers and genomic alterations affecting enzyme activity, transporter capacity, channels, and receptors; and therefore the new advances in CRC precision medicine to select the best therapeutic strategy in populations worldwide, with a focus on Latin America.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its Supplementary Information).

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Puccini A, Lenz H-J. Colorectal cancer in 2017: practice-changing updates in the adjuvant and metastatic setting. Nat Rev Clin Oncol. 2017;15:2–3.

    Google Scholar 

  3. Sabarinathan R, Pich O, Martincorena I, Rubio-Perez C, Juul M, Wala J, et al. The whole-genome panorama of cancer drivers. 2017. https://www.biorxiv.org/content/10.1101/190330v1.

  4. López-Cortés A, Guerrero S, Redal MA, Alvarado AT, Quiñones LA. State of art of cancer pharmacogenomics in Latin American populations. Int J Mol Sci. 2017;18:pii: E639.

    Google Scholar 

  5. Gupta PD. Pharmacogenetics, pharmacogenomics and ayurgenomics for personalized medicine: a paradigm shift. Indian J Pharm Sci. 2015;77:135–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dugger SA, Platt A, Goldstein DB. Drug development in the era of precision medicine. Nat Rev Drug Discov. 2018;17:183–196.

    CAS  PubMed  Google Scholar 

  7. López-Cortés A, Paz-y-Miño C, Guerrero S, Cabrera-Andrade A, Barigye SJ, Munteanu CR, et al. OncoOmics approaches to reveal essential genes in breast cancer: a panoramic view from pathogenesis to precision medicine. bioRxiv. 2019. https://www.biorxiv.org/content/10.1101/638866v1.

  8. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov. 2007;6:904–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.

    CAS  PubMed  Google Scholar 

  11. Strimpakos AS, Syrigos KN, Saif MW. Pharmacogenetics and biomarkers in colorectal cancer. Pharmacogenomics J. 2009;9:147–60.

    CAS  PubMed  Google Scholar 

  12. Van Cutsem E, Labianca R, Bodoky G, Barone C, Aranda E, Nordlinger B, et al. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J Clin Oncol. 2009;27:3117–25.

    PubMed  Google Scholar 

  13. Van Dongen S. Graph clustering via a discrete uncoupling process. SIAM J Matrix Anal Appl. 2008;30:121–41.

    Google Scholar 

  14. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene Expression classification of CRC into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10:e1001453.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. García-cárdenas JM, Guerrero S, López-cortés A, Armendáriz-castillo I, Guevara-ramírez P, Pérez-villa A, et al. Post-transcriptional regulation of colorectal cancer: a focus on RNA-binding proteins. Front Mol Biosci. 2019;6:1–18.

    Google Scholar 

  17. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17:79–92.

    CAS  PubMed  Google Scholar 

  18. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158:929–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerrero S, López-Cortés A, Indacochea A, García-Cárdenas JM, Zambrano AK, Cabrera-Andrade A, et al. Analysis of racial/ethnic representation in select basic and applied cancer research studies. Sci Rep. 2018;8:13978.

    PubMed  PubMed Central  Google Scholar 

  21. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Google Scholar 

  22. Budinska E, Popovici V, Tejpar S, D’Ario G, Lapique N, Sikora KO, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol. 2013;231:63–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlicker A, Beran G, Chresta CM, McWalter G, Pritchard A, Weston S, et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med Genom. 2012;5:66.

    CAS  Google Scholar 

  24. Perez-Villamil B, Romera-Lopez A, Hernandez-Prieto S, Lopez-Campos G, Calles A, Lopez-Asenjo J-A, et al. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer. 2012;12:260.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Isella C, Brundu F, Bellomo SE, Galimi F, Zanella E, Porporato R, et al. Selective analysis of cancer-cell intrinsic transcriptional traits defines novel clinically relevant subtypes of colorectal cancer. Nat Commun. 2017;8:1–16.

    Google Scholar 

  26. Rodriguez-Salas N, Dominguez G, Barderas R, Mendiola M, García-Albéniz X, Maurel J, et al. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol/Hematol. 2017;109:9–19.

    Google Scholar 

  27. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–9.

    CAS  PubMed  Google Scholar 

  28. Widder M, Luetzkendorf J, Caysa H, Unverzagt S, Wickenhauser C, Benndorf RA, et al. Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a β1-integrin-dependent mechanism. Int J Cancer. 2015;138:964–75.

    PubMed  Google Scholar 

  29. Tamborero D, Gonzalez-Perez A, Perez-llamas C, Deu-Pons J, Kandoth C, Reimand J, et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci Rep. 2013;3:2650.

    PubMed  PubMed Central  Google Scholar 

  30. López-cortés A, Leone PE, Freire-paspuel B, Arcos-villacís N, Guevara-ramírez P, Rosales F, et al. Mutational analysis of oncogenic AKT1 gene associated with breast cancer risk in the high altitude ecuadorian mestizo population. Biomed Res Int. 2018;2018:7463832.

    PubMed  PubMed Central  Google Scholar 

  31. López-Cortés A, Cabrera-Andrade A, Oña-Cisneros F, Rosales F, Ortiz M, Tejera E, et al. Breast cancer risk associated with genotype polymorphisms of the aurora kinase a gene (AURKA): a case-control study in a high altitude ecuadorian mestizo population. Pathol Oncol Res. 2017;24:457–65.

    PubMed  Google Scholar 

  32. Paz-Y-Miño C, Robles P, Salazar C, Leone PE, García-Cárdenas JM, Naranjo M, et al. Positive association of the androgen receptor CAG repeat length polymorphism with the risk of prostate cancer. Mol Med Rep. 2016;14:1791–8.

    PubMed  Google Scholar 

  33. López-Cortés A, Jaramillo-Koupermann G, Muñoz MJ, Cabrera A, Echeverría C, Rosales F, et al. Genetic polymorphisms in MTHFR (C677T, A1298C), MTR (A2756G) and MTRR (A66G) genes associated with pathological characteristics of prostate cancer in the ecuadorian population. Am J Med Sci. 2013;346:447–54.

    PubMed  Google Scholar 

  34. Paz-y-Miño C, Muñoz MJ, López-Cortés A, Cabrera A, Palacios A, Castro B, et al. Frequency of polymorphisms pro198leu in GPX-1 gene and ile58thr in MnSOD gene in the altitude Ecuadorian population with bladder cancer. Oncol Res. 2010;18:395–400.

    PubMed  Google Scholar 

  35. Paz-y-Miño C, López-Cortés A, Muñoz MJ, Cabrera A, Castro B, Sánchez ME. Incidence of the L858R and G719S mutations of the epidermal growth factor receptor oncogene in an Ecuadorian population with lung cancer. Cancer Genet Cytogenet. 2010;196:201–3.

    PubMed  Google Scholar 

  36. Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature. 1982;300:149–52.

    CAS  PubMed  Google Scholar 

  37. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, et al. Mechanism of activation of a human oncogene. Nature. 1982;300:143–9.

    CAS  PubMed  Google Scholar 

  38. Rubio-Perez C, Tamborero D, Schroeder MP, Antolín AA, Deu-Pons J, Perez-Llamas C, et al. In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting opportunities. Cancer Cell. 2015;27:382–96.

    CAS  PubMed  Google Scholar 

  39. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive characterization of cancer driver genes and mutations. Cell 2018;173:371–385.e18.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18:696–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tamborero D, Rubio-Perez C, Deu-Pons J, Schroeder MP, Vivancos A, Rovira A, et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 2018;10:1–8.

    Google Scholar 

  42. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;0:mdw235.

    Google Scholar 

  43. Yoshino T, Arnold D, Taniguchi H, Pentheroudakis G, Yamazaki K, Xu R, et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer; A JSMO - ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol J Eur Soc Med Oncol. 2017;29:2–70.

    Google Scholar 

  44. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN Guidelines®) colon cancer. Natl Compr Cancer Netw. 2018;1:1–180.

  45. Mehmood RK. Review of Cisplatin and oxaliplatin in current immunogenic and monoclonal antibody treatments. Oncol Rev. 2014;8:256.

    PubMed  PubMed Central  Google Scholar 

  46. Thavaneswaran S, Rath E, Tucker K, Joshua AM, Hess D, Pinese M, et al. Therapeutic implications of germline genetic findings in cancer. Nat Rev Clin Oncol. 2019;16:386–96.

    CAS  PubMed  Google Scholar 

  47. Friedberg EC. Nucleotide excision repair in eukaryotes. eLS. 2001;36:1–8.

    Google Scholar 

  48. McWhinney SR, Goldberg RM, McLeod HL. Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther. 2009;8:10–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumamoto K, Ishibashi K, Okada N, Tajima Y, Kuwabara K, Kumagai Y, et al. Polymorphisms of GSTP1, ERCC2 and TS-3’UTR are associated with the clinical outcome of mFOLFOX6 in colorectal cancer patients. Oncol Lett. 2013;6:648–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Inada M, Sato M, Morita S, Kitagawa K, Kawada K, Mitsuma A, et al. Associations between oxaliplatin-induced peripheral neuropathy and polymorphisms of the ERCC1 and GSTP1 genes. Int J Clin Pharm Ther. 2010;48:729–34.

    CAS  Google Scholar 

  51. Kap EJ, Richter S, Rudolph A, Jansen L, Ulrich A, Hoffmeister M, et al. Genetic variants in the glutathione S-transferase genes and survival in colorectal cancer patients after chemotherapy and differences according to treatment with oxaliplatin. Pharmacogenet Genom. 2014;24:340–7.

    CAS  Google Scholar 

  52. McLeod HL, Sargent DJ, Marsh S, Green EM, King CR, Fuchs CS, et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J Clin Oncol. 2010;28:3227–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Takenaka T, Yano T, Kiyohara C, Miura N, Kouso H, Ohba T, et al. Effects of excision repair cross-complementation group 1 (ERCC1) single nucleotide polymorphisms on the prognosis of non-small cell lung cancer patients. Lung Cancer. 2010;67:101–7.

    PubMed  Google Scholar 

  54. Ma S-C, Zhao Y, Zhang T, Ling X-L, Zhao D. Association between the ERCC1 rs11615 polymorphism and clinical outcomes of oxaliplatin-based chemotherapies in gastrointestinal cancer: a meta-analysis. Onco Targets Ther. 2015;8:641–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin M, Yan J, Martinez-Balibrea E, Graziano F, Lenz H-J, Kim H-J, et al. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin Cancer Res. 2011;17(Mar):1632–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen J, Xie F, Chen K, Wang D, Jiang H, Li J, et al. ERCC5 promoter polymorphisms at -763 and +25 predict the response to oxaliplatin-based chemotherapy in patients with advanced colorectal cancer. Cancer Biol Ther. 2009;8:1424–30.

    CAS  PubMed  Google Scholar 

  57. Zaanan A, Dalban C, Emile J-F, Blons H, Fléjou J-F, Goumard C, et al. ERCC1, XRCC1 and GSTP1 single nucleotide polymorphisms and survival of patients with colon cancer receiving oxaliplatin-based adjuvant chemotherapy. J Cancer. 2014;5:425–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Di Francia R, Siesto RS, Valente D, Del Buono A, Pugliese S, Cecere S, et al. Current strategies to minimize toxicity of oxaliplatin: selection of pharmacogenomic panel tests. Anti-Cancer Drugs. 2013;24:1069–78.

    PubMed  Google Scholar 

  59. Ruzzo A, Graziano F, Galli F, Giacomini E, Floriani I, Galli F, et al. Genetic markers for toxicity of adjuvant oxaliplatin and fluoropyrimidines in the phase III TOSCA trial in high-risk colon cancer patients. Sci Rep. 2014;4:6828.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sullivan I, Salazar J, Majem M, Pallarés C, Del Río E, Páez D, et al. Pharmacogenetics of the DNA repair pathways in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Lett. 2014;353:160–6.

    CAS  PubMed  Google Scholar 

  61. Artac M, Bozcuk H, Pehlivan S, Akcan S, Pehlivan M, Sever T, et al. The value of XPD and XRCC1 genotype polymorphisms to predict clinical outcome in metastatic colorectal carcinoma patients with irinotecan-based regimens. J Cancer Res Clin Oncol. 2010;136:803–9.

    CAS  PubMed  Google Scholar 

  62. Cecchin E, D’Andrea M, Lonardi S, Zanusso C, Pella N, Errante D, et al. A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. Pharmacogenom J 2013;13:403–9.

    CAS  Google Scholar 

  63. Huang T, Shu Y, Cai Y-D. Genetic differences among ethnic groups. BMC Genomics 2015;16:1093.

    PubMed  PubMed Central  Google Scholar 

  64. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Google Scholar 

  65. Walko CM, Lindley C. Capecitabine: a review. Clin Ther. 2005;27:23–44.

    CAS  PubMed  Google Scholar 

  66. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.

    CAS  PubMed  Google Scholar 

  67. Loganayagam A, Arenas Hernandez M, Corrigan A, Fairbanks L, Lewis CM, Harper P, et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer. 2013;108:2505–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Toffoli G, Giodini L, Buonadonna A, Berretta M, De Paoli A, Scalone S, et al. Clinical validity of a DPYD-based pharmacogenetic test to predict severe toxicity to fluoropyrimidines. Int J Cancer. 2015;137:2971–80.

    CAS  PubMed  Google Scholar 

  69. Galván CA, Elbarcha OC, Fernández EJ, Beltramo DM, Soria NW. Genetic profiling of GSTP1, DPYD, FCGR2A, FCGR3A and CCND1 genes in an Argentinian population. Clin Biochem. 2011;44:1058–61.

    PubMed  Google Scholar 

  70. Koumarianou A, Tzeveleki I, Mekras D, Eleftheraki AG, Bobos M, Wirtz R, et al. Prognostic markers in early-stage colorectal cancer: significance of TYMS mRNA expression. Anticancer Res. 2014;34:4949–62.

    PubMed  Google Scholar 

  71. Rosmarin D, Palles C, Pagnamenta A, Kaur K, Pita G, Martin M, et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut. 2015;64:111–20.

    CAS  PubMed  Google Scholar 

  72. López-Cortés A, Echeverría C, Oña-Cisneros F, Sánchez ME, Herrera C, Cabrera-Andrade A, et al. Breast cancer risk associated with gene expression and genotype polymorphisms of the folate-metabolizing MTHFR gene: a case-control study in a high altitude Ecuadorian mestizo population. Tumour Biol. 2015;36:6451–61.

    PubMed  Google Scholar 

  73. Funke S, Brenner H, Chang-Claude J. Pharmacogenetics in colorectal cancer: a systematic review. Pharmacogenomics. 2008;9:1079–99.

    CAS  PubMed  Google Scholar 

  74. García-González X, Cortejoso L, García MI, García-Alfonso P, Robles L, Grávalos C, et al. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget. 2015;6:6422–30.

    PubMed  PubMed Central  Google Scholar 

  75. Gonzalez-Haba E, García MI, Cortejoso L, López-Lillo C, Barrueco N, García-Alfonso P, et al. ABCB1 gene polymorphisms are associated with adverse reactions in fluoropyrimidine-treated colorectal cancer patients. Pharmacogenomics. 2010;11:1715–23.

    CAS  PubMed  Google Scholar 

  76. Huang L, Chen F, Chen Y, Yang X, Xu S, Ge S, et al. Thymidine phosphorylase gene variant, platelet counts and survival in gastrointestinal cancer patients treated by fluoropyrimidines. Sci Rep. 2014;4:5697.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jennings BA, Kwok CS, Willis G, Matthews V, Wawruch P, Loke YK. Functional polymorphisms of folate metabolism and response to chemotherapy for colorectal cancer, a systematic review and meta-analysis. Pharmacogenet Genom. 2012;22:290–304.

    CAS  Google Scholar 

  78. Teh LK, Hamzah S, Hashim H, Bannur Z, Zakaria ZA, Hasbullani Z, et al. Potential of dihydropyrimidine dehydrogenase genotypes in personalizing 5-fluorouracil therapy among colorectal cancer patients. Ther Drug Monit. 2013;35:624–30.

    CAS  PubMed  Google Scholar 

  79. Afzal S, Jensen SA, Vainer B, Vogel U, Matsen JP, Sørensen JB, et al. MTHFR polymorphisms and 5-FU-based adjuvant chemotherapy in colorectal cancer. Ann Oncol. 2009;20:1660–6.

    CAS  PubMed  Google Scholar 

  80. Absenger G, Benhaim L, Szkandera J, Zhang W, Yang D, Labonte MJ, et al. The cyclin D1 (CCND1) rs9344 G>A polymorphism predicts clinical outcome in colon cancer patients treated with adjuvant 5-FU-based chemotherapy. Pharmacogenom J. 2014;14:130–4.

    CAS  Google Scholar 

  81. Armand JP, Ducreux M, Mahjoubi M, Abigerges D, Bugat R, Chabot G, et al. CPT-11 (irinotecan) in the treatment of colorectal cancer. Eur J Cancer. 1995;31A:1283–7.

    CAS  PubMed  Google Scholar 

  82. Ando Y, Hasegawa Y. Clinical pharmacogenetics of irinotecan (CPT-11). Drug Metab Rev. 2005;37:565–74.

    CAS  PubMed  Google Scholar 

  83. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M, et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009;27:2604–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu X, Xu W. UGT1A1*28 polymorphisms: a potential pharmacological biomarker of irinotecan-based chemotherapies in colorectal cancer. Pharmacogenomics. 2014;15:1171–4.

    CAS  PubMed  Google Scholar 

  85. Maeda H, Hazama S, Shavkat A, Okamoto K, Oba K, Sakamoto J, et al. Differences in UGT1A1, UGT1A7, and UGT1A9 polymorphisms between Uzbek and Japanese populations. Mol Diagn Ther 2014;18:333–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yao L, Qiu L-X, Yu L, Yang Z, Yu X-J, Zhong Y, et al. The association between TA-repeat polymorphism in the promoter region of UGT1A1 and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;122:879–82.

    CAS  PubMed  Google Scholar 

  87. Cecchin E, Innocenti F, D’Andrea M, Corona G, De Mattia E, Biason P, et al. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J Clin Oncol. 2009;27:2457–65.

    CAS  PubMed  Google Scholar 

  88. Sai K, Saito Y, Maekawa K, Kim S-R, Kaniwa N, Nishimaki-Mogami T, et al. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 2010;66:95–105.

    CAS  PubMed  Google Scholar 

  89. Cha P-C, Mushiroda T, Zembutsu H, Harada H, Shinoda N, Kawamoto S, et al. Single nucleotide polymorphism in ABCG2 is associated with irinotecan-induced severe myelosuppression. J Hum Genet. 2009;54:572–80.

    CAS  PubMed  Google Scholar 

  90. Huang L, Zhang T, Xie C, Liao X, Yu Q, Feng J, et al. SLCO1B1 and SLC19A1 gene variants and irinotecan-induced rapid response and survival: a prospective multicenter pharmacogenetics study of metastatic colorectal cancer. PLoS One. 2013;8:e77223.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yamanaka H, Nakajima M, Katoh M, Hara Y, Tachibana O, Yamashita J, et al. A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics. 2004;14:329–32.

    CAS  PubMed  Google Scholar 

  92. Teft WA, Welch S, Lenehan J, Parfitt J, Choi Y-H, Winquist E, et al. OATP1B1 and tumour OATP1B3 modulate exposure, toxicity, and survival after irinotecan-based chemotherapy. Br J Cancer. 2015;112:857–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kubo T, Kim S-R, Sai K, Saito Y, Nakajima T, Matsumoto K, et al. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Drug Metab Dispos. 2005;33:1482–7.

    CAS  PubMed  Google Scholar 

  94. Swami U, Goel S, Mani S. Therapeutic targeting of CPT-11 induced diarrhea: a case for prophylaxis. Curr Drug Targets. 2013;14:777–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Marsh S, Hoskins JM. Irinotecan pharmacogenomics. Pharmacogenomics. 2010;11:1003–10.

    CAS  PubMed  Google Scholar 

  96. Bignucolo A, De Mattia E, Cecchin E, Roncato R, Toffoli G. Pharmacogenomics of targeted agents for personalization of colorectal cancer treatment. Int J Mol Sci. 2017;18:pii: E1522.

    Google Scholar 

  97. Zondor SD, Medina PJ. Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann Pharmacother. 2004;38:1258–64.

    CAS  PubMed  Google Scholar 

  98. Zhang W, Azuma M, Lurje G, Gordon MA, Yang D, Pohl A, et al. Molecular predictors of combination targeted therapies (cetuximab, bevacizumab) in irinotecan-refractory colorectal cancer (BOND-2 study). Anticancer Res. 2010;30:4209–17.

    CAS  PubMed  Google Scholar 

  99. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 2005;7:122–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Loupakis F, Cremolini C, Yang D, Salvatore L, Zhang W, Wakatsuki T, et al. Prospective validation of candidate SNPs of VEGF/VEGFR pathway in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab. PLoS One. 2013;8:e66774.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim JC, Ha YJ, Roh SA, Choi EY, Yoon YS, Kim KP, et al. Feasibility of proposed single-nucleotide polymorphisms as predictive markers for targeted regimens in metastatic colorectal cancer. Br J Cancer. 2013;108:1862–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Formica V, Palmirotta R, Del Monte G, Savonarola A, Ludovici G, De Marchis ML, et al. Predictive value of VEGF gene polymorphisms for metastatic colorectal cancer patients receiving first-line treatment including fluorouracil, irinotecan, and bevacizumab. Int J Colorectal Dis. 2011;26:143–51.

    PubMed  Google Scholar 

  103. Sibertin-Blanc C, Mancini J, Fabre A, Lagarde A, Del Grande J, Levy N, et al. Vascular Endothelial Growth Factor A c.*237C>T polymorphism is associated with bevacizumab efficacy and related hypertension in metastatic colorectal cancer. Dig Liver Dis. 2015;47:331–7.

    CAS  PubMed  Google Scholar 

  104. Wang J, Guo C, Liu S, Qi H, Yin Y, Liang R, et al. Annexin A11 in disease. Clin Chim Acta 2014;431:164–8.

    CAS  PubMed  Google Scholar 

  105. Gerger A, El-Khoueiry A, Zhang W, Yang D, Singh H, Bohanes P, et al. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res. 2011;17:5783–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis CS. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol. 2015;26:13–21.

    CAS  PubMed  Google Scholar 

  107. Waring P, Tie J, Maru D, Karapetis CS. RAS mutations as predictive biomarkers in clinical management of metastatic colorectal cancer. Clin Colorectal Cancer. 2015;15:95–103.

    PubMed  Google Scholar 

  108. Pander J, Gelderblom H, Antonini NF, Tol J, van Krieken JHJM, van der Straaten T, et al. Correlation of FCGR3A and EGFR germline polymorphisms with the efficacy of cetuximab in KRAS wild-type metastatic colorectal cancer. Eur J Cancer. 2010;46:1829–34.

    CAS  PubMed  Google Scholar 

  109. Bonin S, Donada M, Bussolati G, Nardon E, Annaratone L, Pichler M, et al. A synonymous EGFR polymorphism predicting responsiveness to anti-EGFR therapy in metastatic colorectal cancer patients. Tumour Biol. 2015;37:7295–303.

    PubMed  Google Scholar 

  110. Lurje G, Nagashima F, Zhang W, Yang D, Chang HM, Gordon MA, et al. Polymorphisms in cyclooxygenase-2 and epidermal growth factor receptor are associated with progression-free survival independent of K-ras in metastatic colorectal cancer patients treated with single-agent cetuximab. Clin Cancer Res. 2008;14:7884–95.

    CAS  PubMed  Google Scholar 

  111. Lu X, Chen X, Sun J, Gao P, Song Y, Huang X, et al. Polymorphism in epidermal growth factor is related to clinical outcomes of metastatic colorectal cancer patients treated with cetuximab: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8:10929–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ogino S, Nosho K, Kirkner GJ, Shima K, Irahara N, Kure S, et al. PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J Clin Oncol. 2009;27:1477–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26:5705–12.

    PubMed  Google Scholar 

  114. Oikonomou E, Koustas E, Goulielmaki M, Pintzas A. BRAF vs RAS oncogenes: are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget. 2014;5:11752–77.

    PubMed  PubMed Central  Google Scholar 

  115. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.

    CAS  PubMed  Google Scholar 

  116. Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008;65:1566–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hu-Lieskovan S, Vallbohmer D, Zhang W, Yang D, Pohl A, Labonte MJ, et al. EGF61 polymorphism predicts complete pathologic response to cetuximab-based chemoradiation independent of KRAS status in locally advanced rectal cancer patients. Clin Cancer Res. 2011;17:5161–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011;3:1787–808.

    CAS  PubMed  Google Scholar 

  119. Fiala O, Pesek M, Finek J, Topolcan O, Racek J, Minarik M, et al. High serum level of C-reactive protein is associated with worse outcome of patients with advanced-stage NSCLC treated with erlotinib. Tumour Biol. 2015;36:9215–22.

    CAS  PubMed  Google Scholar 

  120. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol. 2011;2011:379123.

    PubMed  PubMed Central  Google Scholar 

  121. Calemma R, Ottaiano A, Trotta AM, Nasti G, Romano C, Napolitano M, et al. Fc gamma receptor IIIa polymorphisms in advanced colorectal cancer patients correlated with response to anti-EGFR antibodies and clinical outcome. J Transl Med. 2012;10:232.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Etienne-Grimaldi M-C, Bennouna J, Formento J-L, Douillard J-Y, Francoual M, Hennebelle I, et al. Multifactorial pharmacogenetic analysis in colorectal cancer patients receiving 5-fluorouracil-based therapy together with cetuximab-irinotecan. Br J Clin Pharmacol. 2012;73:776–85.

    CAS  PubMed  Google Scholar 

  123. Bibeau F, Lopez-Crapez E, Di Fiore F, Thezenas S, Ychou M, Blanchard F, et al. Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol. 2009;27:1122–9.

    CAS  PubMed  Google Scholar 

  124. Borrero-Palacios A, Cebrián A, Gómez del Pulgar MT, García-Carbonero R, García P, Aranda E, et al. Combination of KIR2DS4 and FcγRIIa polymorphisms predicts the response to cetuximab in KRAS mutant metastatic colorectal cancer. Sci Rep. 2019;9:2589.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta. 2007;1773:1161–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Punt CJA, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 2017;14:235–46.

    CAS  PubMed  Google Scholar 

  128. Pelizzo MR, Dobrinja C, Casal Ide E, Zane M, Lora O, Toniato A, et al. The role of BRAF(V600E) mutation as poor prognostic factor for the outcome of patients with intrathyroid papillary thyroid carcinoma. Biomed Pharmacother = Biomédecine pharmacothérapie. 2014;68:413–7.

    CAS  PubMed  Google Scholar 

  129. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Agúndez JAG, Blanca M, Cornejo-García JA, García-Martín E. Pharmacogenomics of cyclooxygenases. Pharmacogenomics. 2015;16:501–22.

    PubMed  Google Scholar 

  131. Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, et al. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol. 2002;22:1631–6.

    CAS  PubMed  Google Scholar 

  132. de Vries N, Swets M, Vahrmeijer A, Hokland M, Kuppen P. The Immunogenicity of Colorectal Cancer in Relation to Tumor Development and Treatment. Int J Mol Sci. 2016;17:1030.

    PubMed Central  Google Scholar 

  133. Riley JM, Cross AW, Paulos CM, Rubinstein MP, Wrangle J, Camp ER. The clinical implications of immunogenomics in colorectal cancer: a path for precision medicine. Cancer. 2018;124:1650–9.

    PubMed  Google Scholar 

  134. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018; 48:812–30.

  135. Passardi A, Canale M, Valgiusti M, Ulivi P. Immune checkpoints as a target for colorectal cancer treatment. Int J Mol Sci. 2017;18:pii: E1324.

    Google Scholar 

  136. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu X, Zhang H, Xing Q, Cui J, Li J, Li Y, et al. PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer. 2014;111:1391–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rosenbaum MW, Bledsoe JR, Morales-Oyarvide V, Huynh TG, Mino-Kenudson M. PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes. Mod Pathol. 2016;29:1104–12. In:

    CAS  PubMed  Google Scholar 

  139. Wang HB, Yao H, Li CS, Liang LX, Zhang Y, Chen YX, et al. Rise of PD-L1 expression during metastasis of colorectal cancer: implications for immunotherapy. J Dig Dis. 2017;18:574–81.

    CAS  PubMed  Google Scholar 

  140. Goswami S, Basu S, Sharma P. A potential biomarker for anti-PD-1 immunotherapy. Nat Med. 2018;24:123–4.

    CAS  PubMed  Google Scholar 

  141. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2017;18:153–67.

    PubMed  Google Scholar 

  142. Singh PP, Sharma PK, Krishnan G, Lockhart AC. Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol Rep. 2015;3:gov053.

    Google Scholar 

  143. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res. 2013;19:462–8.

    CAS  PubMed  Google Scholar 

  147. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5:43–51.

    CAS  PubMed  Google Scholar 

  148. Gatalica Z, Snyder C, Maney T, Ghazalpour A, Holterman DA, Xiao N, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomark Prev. 2014;23:2965–70.

    CAS  Google Scholar 

  149. Tauriello DVF, Palomo-ponce S, Iglesias M, Stork D, Sevillano M, Berenguer-llergo A, et al. TGF-beta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554:538–43.

    CAS  PubMed  Google Scholar 

  150. Cantelli G, Crosas-Molist E, Georgouli M, Sanz-Moreno V. TGFΒ-induced transcription in cancer. Semin Cancer Biol. 2017;42:60–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Colak S, ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer. 2017;3:56–71.

    CAS  PubMed  Google Scholar 

  152. Ding L, Bailey MH, Porta-Pardo E, Thorsson V, Colaprico A, Bertrand D, et al. Perspective on oncogenic processes at the end of the beginning of cancer genomics. Cell. 2018;173:305–320.e10.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang KL, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, et al. Pathogenic germline variants in 10,389 adult cancers. Cell. 2018;173:355–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature.2016;536:285–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Carvalho-Silva D, Pierleoni A, Pignatelli M, Ong CK, Fumis L, Karamanis N, et al. Open Targets Platform: New developments and updates two years on. Nucleic Acids Res. 2019;47:D1056–65.

    CAS  PubMed  Google Scholar 

  156. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRINGv10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.

    CAS  PubMed  Google Scholar 

  157. López-Cortés A, Paz-y-Miño C, Cabrera-Andrade A, Barigye SJ, Munteanu CR, González-Díaz H, et al. Gene prioritization, communality analysis, networking and metabolic integrated pathway to better understand breast cancer pathogenesis. Sci Rep. 2018;8:16679.

    PubMed  PubMed Central  Google Scholar 

  158. Thorn CF, Klein TE, Altman RB. PharmGKB: the pharmacogenomics knowledge base. Methods Mol Biol. 2013;1015:311–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103:210–6.

    CAS  PubMed  Google Scholar 

  160. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    CAS  Google Scholar 

  161. Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, Callaghan JT, et al. CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther. 2016;99:36–7.

    CAS  PubMed  Google Scholar 

  162. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, et al. Pharmacogenetics: from bench to byte—an update of guidelines. Clin Pharmacol Ther. 2011;89:662–73.

    CAS  PubMed  Google Scholar 

  163. Ross CJD, Visscher H, Sistonen J, Brunham LR, Pussegoda K, Loo TT, et al. The Canadian pharmacogenomics network for drug safety: a model for safety pharmacology. Thyroid. 2010;20:681–7.

    CAS  PubMed  Google Scholar 

  164. Zambrano AK, Gaviria A, Cobos-Navarrete S, Gruezo C, Rodríguez-Pollit C, Armendáriz-Castillo I, et al. The three-hybrid genetic composition of an Ecuadorian population using AIMs-InDels compared with autosomes, mitochondrial DNA and Y chromosome data. Sci Rep. 2019;9:9247.

    PubMed  PubMed Central  Google Scholar 

  165. Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570:514–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Quinones L, Lavanderos M, Cayun J, Garcia-Martin E, Agundez J, Caceres D, et al. Perception of the usefulness of drug/gene pairs and barriers for pharmacogenomics in Latin America. Curr Drug Metab. 2014;15:202–8.

    PubMed  Google Scholar 

  167. Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease–implications for personalized medicine. Pharmacol Rev. 2013;65:987–1009.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Universidad UTE and the Latin American Society of Pharmacogenomics and Personalized Medicine (SOLFAGEM) supported this research.

Funding

This work was co-funded by Universidad UTE and Project 219RT0572, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED).

Author information

Authors and Affiliations

Authors

Contributions

ALC and NWS conceived the subject and wrote the paper. ALC, GJK, DPIB, JGC, PEL, IAC and PGR did data curation and supplementary data. ALCa, SG, CPyM, LAQ and JPC made a substantial contribution to the discussion of content. All authors reviewed and/or edited the article before submission.

Corresponding authors

Correspondence to Andrés López-Cortés or César Paz-y-Miño.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official view of the National Institutes of Health.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Cortés, A., Paz-y-Miño, C., Guerrero, S. et al. Pharmacogenomics, biomarker network, and allele frequencies in colorectal cancer. Pharmacogenomics J 20, 136–158 (2020). https://doi.org/10.1038/s41397-019-0102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0102-4

This article is cited by

Search

Quick links