Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An African-specific profile of pharmacogene variants for rosuvastatin plasma variability: limited role for SLCO1B1 c.521T>C and ABCG2 c.421A>C

Abstract

Studies in Caucasian and Asian populations consistently associated interindividual and interethnic variability in rosuvastatin pharmacokinetics to the polymorphisms SLCO1B1 c.521T>C (rs4149056 p. Val174Ala) and ABCG2 c.421C>A (rs2231142, p. Gln141Lys). To investigate the pharmacogenetics of rosuvastatin in African populations, we first screened 785 individuals from nine ethnic African populations for the SLCO1B1 c.521C and ABCG2 c.421CA variants. This was followed by sequencing whole exomes from individuals of African Bantu descent, who participated in a 20 mg rosuvastatin pharmacokinetic trial in Harare Zimbabwe. Frequencies of SLCO1B1 c.521C ranged from 0.0% (San) to 7.0% (Maasai), while ABCG2 c.421A ranged from 0.0% (Shona) to 5.0% (Kikuyu). Variants showing significant association with rosuvastatin exposure were identified in SLCO1B1, ABCC2, SLC10A2, ABCB11, AHR, HNF4A, RXRA and FOXA3, and appear to be African specific. Interindividual differences in the pharmacokinetics of rosuvastatin in this African cohort cannot be explained by the polymorphisms SLCO1B1 c.521T>C and ABCG2 c.421C>A, but appear driven by a different set of variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee E, Ryan S, Birmingham B, Zalikowski J, March R, Ambrose H, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther. 2005;78:330–41.

    Article  CAS  Google Scholar 

  2. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharm Genom. 2006;16:873–9.

    Article  CAS  Google Scholar 

  3. SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy-a genome wide study. N Engl J Med. 2008;359:333–40.

    Article  Google Scholar 

  4. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63:157–81.

    Article  CAS  Google Scholar 

  5. DeGorter MK, Tirona RG, Schwarz UI, Choi Y-H, Dresser GK, Suskin N, et al. Clinical and pharmacogenetic predictors of circulating atorvastatin and rosuvastatin concentrations in routine clinical care. Circ Cardiovasc Genet. 2013;6:400–8.

    Article  CAS  Google Scholar 

  6. Birmingham BK, Bujac SR, Elsby R, Azumaya CT, Zalikowski J, Chen Y, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in Caucasian and Asian subjects residing in the United States. Eur J Clin Pharmacol. 2015;71:329–40.

    Article  CAS  Google Scholar 

  7. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  8. Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: The justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5:257–64.

    Article  CAS  Google Scholar 

  9. Astra Zeneca. Crestor Prescribing Information. 2016. Accessed through https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021366s016lbl.pdf

  10. Hoosain N, Pearce B, Jacobs C, Benjeddou M. Mapping SLCO1B1 genetic variation for global precision medicine in understudied regions in Africa: A focus on Zulu and Cape admixed populations. Omi A J Integr Biol. 2016;20:546–54.

    Article  CAS  Google Scholar 

  11. Mpeta B, Kampira E, Castel S, Mpye KL, Soko ND, Wiesner L, et al. Differences in genetic variants in lopinavir disposition among HIV-infected Bantu Africans. Pharmacogenomics. 2016;17:679–90.

    Article  CAS  Google Scholar 

  12. Soko N, Dandara C, Ramesar R, Kadzirange G, Masimirembwa C. Pharmacokinetics and pharmacogenetics of rosuvastatin in 30 healthy Zimbabwean individuals of African ancestry. Br J Clin Pharmacol. 2016;2:326–8.

    Article  Google Scholar 

  13. Aklillu E, Habtewold A, Ngaimisi E, Yimer G, Mugusi S, Amogne W, et al. SLCO1B1 gene variations among Tanzanians, Ethopians and Europeans: relevance for African and worldwide precision medicine. OMICS. 2016;20:538–45.

    Article  CAS  Google Scholar 

  14. Matimba A, Oluka MN, Ebeshi BU, Sayi J, Bolaji OO, Guantai AN, et al. Establishment of a biobank and pharmacogenetics database of African populations. Eur J Hum Genet. 2008;16:780–3.

    Article  CAS  Google Scholar 

  15. Depristo MA, Banks E, Poplin RE, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. HHS Public Access. Nat Genet. 2011;43:491–8.

    Article  CAS  Google Scholar 

  16. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucl Acids Res. 2010;38:e164.

    Article  Google Scholar 

  17. Thorn CF, Klein TE, Altman RB. PharmGKB: the pharmacogenomics knowledge base. Methods Mol Biol. 2013;1015:311–20.

    Article  CAS  Google Scholar 

  18. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucl Acids Res. 2016;44:D862–8.

    Article  CAS  Google Scholar 

  19. Sifrim A, Popovic D, Tranchevent L-C, Ardeshirdavani A, Sakai R, Konings P, et al. eXtasy: variant prioritization by genomic data fusion. Nat Meth. 2013;10:1083–4.

    Article  CAS  Google Scholar 

  20. Winter JCF. Using the Student’ s t-test with extremely small sample sizes. PARE. 2013;18:1–12.

  21. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.

    Article  CAS  Google Scholar 

  22. Masimirembwa C, Hasler J. Pharmacogenetics in Africa, an opportunity for appropriate drug dosage regimens: on the road to personalized. Healthc CPT Pharmacomet Syst Pharmacol. 2013;2:e45.

    Article  Google Scholar 

  23. Dandara C, Swart M, Mpeta B, Wonkam A, Masimirembwa C. Cytochrome P450 pharmacogenetics in African populations: implications for public health. Expert Opin Drug Metab Toxicol. 2014;10:769–85.

    Article  CAS  Google Scholar 

  24. Soko ND, Masimirembwa C, Dandara C. Pharmacogenomics of Rosuvastatin: A glocal (global+local) African perspective and expert review on a statin drug. OMICS. 2016;20:498–509.

    Article  CAS  Google Scholar 

  25. PCJL Santos, Soares RaG, Nascimento RM, Machado-Coelho GLL, Mill JG, Krieger JE, et al. SLCO1B1rs4149056 polymorphism associated with statin-induced myopathy is differently distributed according to ethnicity in the Brazilian general population: Amerindians as a high risk ethnic group. BMC Med Genet. 2011;12:136.

    Article  Google Scholar 

  26. Ngaimisi E, Habtewold A, Minzi O, Makonnen E, Mugusi S, Amogne W, et al. Importance of ethnicity, CYP2B6 and ABCB1 genotype for Efavirenz pharmacokinetics and treatment outcomes: A parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS ONE. 2013;8:e67946.

    Article  CAS  Google Scholar 

  27. Masimirembwa C, Dandara C, Leutscher PDC. Rolling out efavirenz for HIV precision medicine in Africa: are we ready for pharmacovigilance and tackling neuropsychiatric adverse effects? Omi A J Integr Biol. 2016;20:575–80.

    Article  CAS  Google Scholar 

  28. Nebert DW. Extreme discordant phenotype methodology: an intuitive approach to clinical pharmacogenetics. Eur J Pharmacol. 2000;410:107–20.

    Article  CAS  Google Scholar 

  29. Westlind-Johnsson A, Hermann R, Huennemeyer A, Hauns B, Lahu G, Nassr N, et al. Identification and characterization of CYP3A4*20, a novel rare CYP3A4 allele without functional activity. Clin Pharmacol Ther. 2006;79:339–49.

    Article  CAS  Google Scholar 

  30. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11:415–25.

    Article  CAS  Google Scholar 

  31. Apellaniz-Ruiz M, Lee M-Y, Sanchez-Barroso L, Gutierrez-Gutierrez G, Calvo I, Garcia-Estevez L, et al. Whole-exome sequencing reveals defective CYP3A4 variants predictive of paclitaxel dose-limiting neuropathy. Clin Cancer Res. 2015;21:322–8.

    Article  CAS  Google Scholar 

  32. Zhang G, Nebert DW, Chakraborty R, Jin L. Statistical power of association using the extreme discordant phenotype design. Pharm Genom. 2006;16:401–13.

    Article  CAS  Google Scholar 

  33. Martin PD, Warwick MJ, Dane AL, Hill SJ, Giles PB, Phillips PJ, et al. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther. 2003;25:2822–35.

    Article  CAS  Google Scholar 

  34. Cooper KJ, Martin PD, Dane AL, Warwick MJ, Raza A, Schneck DW. Lack of effect of ketoconazole on the pharmacokinetics of rosuvastatin in healthy subjects. Br J Clin Pharmacol. 2003;55:94–9.

    Article  CAS  Google Scholar 

  35. Cooper KJ, Martin PD, Dane AL, Warwick MJ, Schneck DW, Cantarini MV. The effect of fluconazole on the pharmacokinetics of rosuvastatin. Eur J Clin Pharmacol. 2002;58:527–31.

    Article  CAS  Google Scholar 

  36. Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D, Wilke RA, et al. The Clinical Pharmacogenetics Implementation Consortium guideline for SLCO1B1 and Simvastatin-Induced Myopathy: 2014 Update. Clin Pharmacol Ther. 2014;96:423–8.

    Article  CAS  Google Scholar 

  37. Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S, Scheet P, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22:1–8.

    Article  CAS  Google Scholar 

  38. Nies AT, Niemi M, Burk O, Winter S, Zanger UM, Stieger B, et al. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1. Genome Med. 2013;5:1.

    Article  CAS  Google Scholar 

  39. Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos. 2008;36:2014–23.

    Article  CAS  Google Scholar 

  40. Jemnitz K, Veres Z, Tugyi R, Vereczkey L. Biliary efflux transporters involved in the clearance of rosuvastatin in sandwich culture of primary rat hepatocytes. Toxicol Vitr. 2010;24:605–10.

    Article  CAS  Google Scholar 

  41. Pfeifer ND, Bridges AS, Ferslew BC, Hardwick RN, Brouwer KLR. Hepatic basolateral efflux contributes significantly to rosuvastatin disposition II: Characterization of hepatic elimination by basolateral, biliary, and metabolic clearance pathways in rat isolated perfused liver. J Pharmacol Exp Ther. 2013;347:737–45.

    Article  CAS  Google Scholar 

  42. Kamiyama Y, Matsubara T, Yoshinari K, Nagata K, Kamimura H, Yamazoe Y. Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab Pharmacokinet. 2007;22:287–98.

    Article  CAS  Google Scholar 

  43. Tirona RG, Leake BF, Wolkoff AW, Kim RB, Pharmacology C, TRG T, et al. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. Pharmacology. 2003;304:223–8.

    CAS  Google Scholar 

  44. Kawashima S, Kobayashi K, Takama K, Higuchi T, Furihata T, Hosokawa M, et al. Involvement of hepatocyte nuclear factor 4alpha in the different expression level between CYP2C9 and CYP2C19 in the human liver. Drug Metab Dispos. 2006;34:1012–8.

    CAS  PubMed  Google Scholar 

  45. Szatmari I, Vámosi G, Brazda P, Balint BL, Benko S, Széles L, et al. Peroxisome proliferator-activated receptor gamma regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem. 2006;281:23821–3.

    Article  Google Scholar 

  46. Li D, Zimmerman TL, Thevananther S, Lee HY, Kurie JM, Karpen SJ. Interleukin-1 beta-mediated suppression of RXR:RAR transactivation of the Ntcp promoter is JNK-dependent. J Biol Chem. 2002;277:31416–22.

    Article  CAS  Google Scholar 

  47. Geier A, Dietrich CG, Gerloff T, Haendly J, Kullak-Ublick GA, Stieger B, et al. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta–Bio. 2003;1609:87–94.

    Article  CAS  Google Scholar 

  48. Chew S, Lim J, Singh O, Chen X, Tan E, Lee E, et al. Pharmacogenetic effects of regulatory nuclear receptors (PXR, CAR, RXR α and HNF4 α) on docetaxel disposition in Chinese nasopharyngeal cancer patients. Eur J Clin Pharm. 2014;70:155–66.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the University of Cape Town and Medical Research Council of South Africa for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collet Dandara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soko, N.D., Chimusa, E., Masimirembwa, C. et al. An African-specific profile of pharmacogene variants for rosuvastatin plasma variability: limited role for SLCO1B1 c.521T>C and ABCG2 c.421A>C. Pharmacogenomics J 19, 240–248 (2019). https://doi.org/10.1038/s41397-018-0035-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-018-0035-3

Search

Quick links