Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Uteroplacental insufficiency decreases leptin expression and impairs lung development in growth-restricted newborn rats

Abstract

Background

The study aimed to analyze the effect of uteroplacental insufficiency (UPI) on leptin expression and lung development of intrauterine growth restriction (IUGR) rats.

Methods

On day 17 of pregnancy, time-dated Sprague-Dawley rats were randomly divided into either an IUGR group or a control group. Uteroplacental insufficiency surgery (IUGR) and sham surgery (control) were conducted. Offspring rats were spontaneously delivered on day 22 of pregnancy. On postnatal days 0 and 7, rats’ pups were selected at random from the control and IUGR groups. Blood was withdrawn from the heart to determine leptin levels. The right lung was obtained for leptin and leptin receptor levels, immunohistochemistry, proliferating cell nuclear antigen (PCNA), western blot, and metabolomic analyses.

Results

UPI-induced IUGR decreased leptin expression and impaired lung development, causing decreased surface area and volume in offspring. This results in lower body weight, decreased serum leptin levels, lung leptin and leptin receptor levels, alveolar space, PCNA, and increased alveolar wall volume fraction in IUGR offspring rats. The IUGR group found significant relationships between serum leptin, radial alveolar count, von Willebrand Factor, and metabolites.

Conclusion

Leptin may contribute to UPI-induced lung development during the postnatal period, suggesting supplementation as a potential treatment.

Impact

  • The neonatal rats with intrauterine growth restriction (IUGR) caused by uteroplacental insufficiency (UPI) showed decreased leptin expression and impaired lung development.

  • UPI-induced IUGR significantly decreased surface area and volume in lung offspring.

  • This is a novel study that investigates leptin expression and lung development in neonatal rats with IUGR caused by UPI.

  • If our findings translate to IUGR infants, leptin may contribute to UPI-induced lung development during the postnatal period, suggesting supplementation as a potential treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of UPI on rat pup weight and serum leptin.
Fig. 2: The effect of UPI on lung leptin and leptin-receptor expression.
Fig. 3: The effect of UPI on lung morphometry.
Fig. 4: The effect of UPI on lung PCNA expression.
Fig. 5: Strong correlation between serum leptin, RAC, and vWF.

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sun, L. The update of fetal growth restriction associated with biomarkers. Matern. Fetal Med. 4, 210–217 (2022).

    Article  Google Scholar 

  2. Harding, R. et al. The compromised intra-uterine environment: implications for future lung health. Clin. Exp. Pharm. Physiol. 27, 965–974 (2000).

    Article  CAS  Google Scholar 

  3. Henriksen, T. & Clausen, T. The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet. Gynecol. Scand. 81, 112–114 (2002).

    Article  PubMed  Google Scholar 

  4. Gagnon, R. Placental Insufficiency and Its Consequences. Eur. J. Obstet. Gynecol. Reprod. Biol. 110, S99–S107 (2003).

    Article  PubMed  Google Scholar 

  5. Mazarico, E., Molinet-Coll, C., Martinez-Portilla, R. J. & Figueras, F. Heparin therapy in placental insufficiency: systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 99, 167–174 (2020).

    Article  PubMed  Google Scholar 

  6. Chen, C. M., Wang, L. F. & Su, B. Effects of maternal undernutrition during late gestation on the lung surfactant system and morphometry in rats. Pediatr. Res. 56, 329–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, L. T., Chou, H. C., Lin, C. M. & Chen, C. M. Uteroplacental insufficiency alters the retinoid pathway and lung development in newborn rats. Pediatr. Neonatol. 57, 508–514 (2016).

    Article  PubMed  Google Scholar 

  8. Kotecha, S. J. et al. Spirometric lung function in school-age children: effect of intrauterine growth retardation and catch-up growth. Am. J. Respir. Crit. Care Med. 181, 969–974 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pike, K., Jane Pillow, J. & Lucas, J. S. Long term respiratory consequences of intrauterine growth restriction. Semin. Fetal Neonatal Med. 17, 92–98 (2012).

    Article  PubMed  Google Scholar 

  10. Arigliani, M. et al. Lung function between 8 and 15 years of age in very preterm infants with fetal growth restriction. Pediatr. Res. 90, 657–663 (2021).

    Article  PubMed  Google Scholar 

  11. den Dekker, H. T., Jaddoe, V. W. V., Reiss, I. K., de Jongste, J. C. & Duijts, L. Fetal and infant growth patterns and risk of lower lung function and asthma. The Generation R Study. Am. J. Respir. Crit Care Med 197, 183–192 (2018).

    Article  Google Scholar 

  12. Jordan, B. K. & McEvoy, C. T. Trajectories of lung function in infants and children: setting a course for lifelong lung health. Pediatrics 146, e20200417 (2020).

    Article  PubMed  Google Scholar 

  13. Wu, G., Bazer, F. W., Wallace, J. M. & Spencer, T. E. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Pierro, M. et al. Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: a systematic review, meta-analysis and meta-regression. Thorax 77, 268–275 (2022).

    Article  PubMed  Google Scholar 

  15. Torchin, H. et al. Placental complications and Bronchopulmonary Dysplasia: Epipage-2 Cohort Study. Pediatrics 137, e20152163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma, D., Shastri, S. & Sharma, P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 10, 67–83 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rosenberg, A. The Iugr Newborn. Semin. Perinatol. 32, 219–224 (2008).

    Article  PubMed  Google Scholar 

  18. Kowalski, T. J., Wu, G. & Watford, M. Rat Adipose tissue amino acid metabolism in vivo as assessed by miodialysis and arteriovenous techniques. Am. J. Physiol. 273, E613–E622 (1997).

    CAS  PubMed  Google Scholar 

  19. Ali Assad, N. & Sood, A. Leptin, Adiponectin and pulmonary diseases. Biochimie 94, 2180–2189 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Jutant, E. M., Tu, L., Humbert, M., Guignabert, C. & Huertas, A. The thousand faces of leptin in the lung. Chest 159, 239–248 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Shin, J. H., Kim, J. H., Lee, W. Y. & Shim, J. Y. The expression of Adiponectin receptors and the effects of Adiponectin and Leptin on airway smooth muscle cells. Yonsei Med J. 49, 804–810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Otero, M. et al. Leptin: A metabolic hormone that functions like a proinflammatory Adipokine. Drug N. Perspect. 19, 21–26 (2006).

    Article  CAS  Google Scholar 

  23. Iikuni, N., Lam, Q. L., Lu, L., Matarese, G. & La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 4, 70–79 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lanier, V. et al. Leptin-induced Transphosphorylation of vascular endothelial growth factor receptor increases notch and stimulates endothelial cell angiogenic transformation. Int J. Biochem. Cell Biol. 79, 139–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chao de la Barca, J. M. et al. A metabolomic profiling of intra-uterine growth restriction in placenta and cord blood points to an impairment of lipid and energetic metabolism. Biomedicines 10, 1411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stingl, H., Raffesberg, W., Nowotny, P., Waldhäusl, W. & Roden, M. Reduction of plasma leptin concentrations by arginine but not lipid infusion in humans. Obes. Res. 10, 1111–1119 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Vernooy, J. H. et al. Leptin as regulator of pulmonary immune responses: involvement in respiratory diseases. Pulm. Pharm. Ther. 26, 464–472 (2013).

    Article  CAS  Google Scholar 

  28. Malli, F., Papaioannou, A. I., Gourgoulianis, K. I. & Daniil, Z. The role of Leptin in the respiratory system: an overview. Respir. Res. 11, 152 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Attig, L., Larcher, T., Gertler, A., Abdennebi-Najar, L. & Djiane, J. Postnatal Leptin is necessary for maturation of numerous organs in newborn rats. Organogenesis 7, 88–94 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kirwin, S. M. et al. Leptin enhances lung maturity in the fetal rat. Pediatr. Res. 60, 200–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, H. et al. Leptin promotes fetal lung maturity and upregulates Sp-a Expression in Pulmonary Alveoli Type-Ii epithelial cells involving Ttf-1 activation. PLoS One 8, e69297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Blasio, M. J. et al. Leptin matures aspects of lung structure and function in the Ovine Fetus. Endocrinology 157, 395–404 (2016).

    Article  PubMed  Google Scholar 

  33. Huang, K. et al. Effects of Leptin deficiency on postnatal lung development in mice. J. Appl. Physiol. 105, 249–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuliana, M. E., Huang, Z. H., Chou, H. C. & Chen, C. M. Effects of Uteroplacental insufficiency on growth-restricted rats with altered lung development: a metabolomic analysis. Front. Pediatr. 10, 952313 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang, Y. S. H., Chou, H. C., Liu, Y. R. & Chen, C. M. Uteroplacental insufficiency causes microbiota disruption and lung development impairment in growth-restricted newborn rats. Nutrients 14, 4388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, L. T., Chou, H. C., Lin, C. M., Yeh, T. F. & Chen, C. M. Maternal Nicotine exposure exacerbates neonatal hyperoxia-induced lung fibrosis in rats. Neonatology 106, 94–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Thaete, L. G., Ahnen, D. J. & Malkinson, A. M. Proliferating Cell Nuclear Antigen (Pcna/Cyclin) immunocytochemistry as a labeling index in mouse lung tissues. Cell Tissue Res. 256, 167–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Agard, C. et al. Protective role of the antidiabetic drug metformin against chronic experimental pulmonary hypertension. Br. J. Pharm. 158, 1285–1294 (2009).

    Article  CAS  Google Scholar 

  39. Obilor, E. I. & Amadi, E.C. Test for significance of Pearson’s correlation coefficient (r). Int. J. Innov. Math. Stat. Energy Policies 6, 11–23 (2018).

    Google Scholar 

  40. Joss-Moore, L. et al. Intrauterine growth restriction transiently delays alveolar formation and disrupts retinoic acid receptor expression in the lung of female rat pups. Pediatr. Res. 73, 612–620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox, A. M., Gao, Y., Perl, A. T., Tepper, R. S. & Ahlfeld, S. K. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function. Pediatr. Pulmonol. 52, 616–624 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nawabi, J. et al. Novel functional role of Gh/Igf-I in neonatal lung myofibroblasts and in rat lung growth after intrauterine growth restriction. Am. J. Physiol. Lung Cell Mol. Physiol. 315, L623–l637 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Rössig, L. et al. Akt-dependent Phosphorylation of P21(Cip1) regulates pcna binding and proliferation of endothelial cells. Mol. Cell Biol. 21, 5644–5657 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muglia, L. J. et al. Proliferation and differentiation defects during lung development in Corticotropin-releasing hormone-deficient mice. Am. J. Respir. Cell Mol. Biol. 20, 181–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Alejandre Alcázar, M. A. et al. Inhibition of Tgf-Β signaling and decreased apoptosis in IUGR-associated lung disease in rats. PLoS One 6, e26371 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Löllmann, B., Grüninger, S., Stricker-Krongrad, A. & Chiesi, M. Detection and quantification of the leptin receptor splice variants Ob-Ra, B, and, E in different mouse tissues. Biochem. Biophys. Res. Commun. 238, 648–652 (1997).

    Article  PubMed  Google Scholar 

  47. Tsuchiya, T., Shimizu, H., Horie, T. & Mori, M. Expression of Leptin receptor in lung: leptin as a growth factor. Eur. J. Pharm. 365, 273–279 (1999).

    Article  CAS  Google Scholar 

  48. Dal Farra, C., Zsürger, N., Vincent, J. P. & Cupo, A. Binding of a Pure 125i-Monoiodoleptin Analog to mouse tissues: a developmental study. Peptides 21, 577–587 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Bergen, H. T., Cherlet, T. C., Manuel, P. & Scott, J. E. Identification of Leptin receptors in lung and isolated fetal Type Ii cells. Am. J. Respir. Cell Mol. Biol. 27, 71–77 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bellmeyer, A. et al. Leptin resistance protects mice from hyperoxia-induced acute lung injury. Am. J. Respir. Crit. Care Med. 175, 587–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Koh, K. K., Park, S. M. & Quon, M. J. Leptin and cardiovascular disease. Circulation 117, 3238–3249 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guagnano, M. T. et al. Leptin Inease is associated with markers of the hemostatic system in obese healthy women. J. Thromb. Haemost. 1, 2330–2334 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Batenburg, J. J. Surfactant Phospholipids: Synthesis and storage. Am. J. Physiol. 262, L367–L385 (1992).

    CAS  PubMed  Google Scholar 

  54. O’Hare, M. M. et al. Lyso-Phosphatidylcholine and outcome of preterm babies with respiratory distress syndrome treated with surfactant. Early Hum. Dev. 49, 135–141 (1997).

    Article  PubMed  Google Scholar 

  55. Agassandian, M. & Mallampalli, R. K. Surfactant phospholipid metabolism. Biochim Biophys. Acta 1831, 612–625 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Matsumoto, T., Kobayashi, T. & Kamata, K. Role of Lysophosphatidylcholine (Lpc) in Atherosclerosis. Curr. Med Chem. 14, 3209–3220 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zheng-Hao Huang for the technical assistance.

Funding

This work was supported by a grant from the Ministry of Science and Technology of Taiwan (MOST 111-2314-B-038-113-MY2).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conducted at the animal center of Taipei Medical University. C-MC. contributed to the conception and design of this study. M.Y., H.-C.C., E. C.-YS., H.-C.C., L.-T.H. and C.-M.C contributed to the performance of the experiments, analysis and interpretation of the data, and approval of the manuscript. All authors agree to assume responsibility for all aspects of the work to ensure proper investigation and resolution of issues related to the accuracy or integrity of any part of the work. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Chung-Ming Chen.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuliana, M.E., Chou, HC., Su, E.CY. et al. Uteroplacental insufficiency decreases leptin expression and impairs lung development in growth-restricted newborn rats. Pediatr Res 95, 1503–1509 (2024). https://doi.org/10.1038/s41390-023-02946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02946-y

Search

Quick links