Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis

Abstract

Metastasis accounts for the major cause of cancer-related mortality. How disseminated tumor cells survive under suspension conditions and avoid anoikis is largely unknown. Here, using a metabolic enzyme-centered CRISPR-Cas9 genetic screen, we identified methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1) as a novel suppressor of anoikis. MTHFD1 depletion obviously restrained the capacity of cellular antioxidant defense and inhibited tumor distant metastasis. Mechanistically, MTHFD1 was found to bind the protein arginine methyltransferase 5 (PRMT5) and then undergo symmetric dimethylation on R173 by PRMT5. Under suspension conditions, the interaction between MTHFD1 and PRMT5 was strengthened, which increased the symmetric dimethylation of MTHFD1. The elevated methylation of MTHFD1 largely augmented its metabolic activity to generate NADPH, therefore leading to anoikis resistance and distant organ metastasis. Therapeutically, genetic depletion or pharmacological inhibition of PRMT5 declined tumor distant metastasis. And R173 symmetric dimethylation status was associated with metastasis and prognosis of ESCC patients. In conclusion, our study uncovered a novel regulatory role and therapeutic implications of PRMT5/MTHFD1 axis in facilitating anoikis resistance and cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MTHFD1 enhances anoikis resistance and metastasis of ESCC cells.
Fig. 2: Symmetric dimethylation of MTHFD1 is increased under suspension conditions.
Fig. 3: SDMA modification by PRMT5 increases enzymatic activity of MTHFD1.
Fig. 4: R173 is the major SDMA modification site of MTHFD1.
Fig. 5: PRMT5 inhibition increases anoikis and prevents cancer metastasis.
Fig. 6: Clinical significance of the PRMT5/MTHFD1 axis in ESCC.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and the Supplementary Information files.

References

  1. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021;21:162–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buchheit CL, Weigel KJ, Schafer ZT. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer. 2014;14:632–41.

    Article  CAS  PubMed  Google Scholar 

  5. Du S, Yang Z, Lu X, Yousuf S, Zhao M, Li W, et al. Anoikis resistant gastric cancer cells promote angiogenesis and peritoneal metastasis through C/EBPbeta-mediated PDGFB autocrine and paracrine signaling. Oncogene. 2021;40:5764–79.

    Article  CAS  PubMed  Google Scholar 

  6. Mason JA, Hagel KR, Hawk MA, Schafer ZT. Metabolism during ECM detachment: achilles heel of cancer cells? Trends Cancer. 2017;3:475–81.

    Article  CAS  PubMed  Google Scholar 

  7. Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene. 2020;39:6139–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li W, Kou J, Qin J, Li L, Zhang Z, Pan Y, et al. NADPH levels affect cellular epigenetic state by inhibiting HDAC3-Ncor complex. Nat Metab. 2021;3:75–89.

    Article  CAS  PubMed  Google Scholar 

  9. Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther. 2020;5:231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ju HQ, Lu YX, Chen DL, Zuo ZX, Liu ZX, Wu QN, et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J Natl Cancer Inst. 2019;111:584–96.

    Article  PubMed  CAS  Google Scholar 

  11. Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37:6025–40.

    Article  CAS  PubMed  Google Scholar 

  12. Lu YX, Ju HQ, Liu ZX, Chen DL, Wang Y, Zhao Q, et al. ME1 regulates NADPH homeostasis to promote gastric cancer growth and metastasis. Cancer Res. 2018;78:1972–85.

    Article  CAS  PubMed  Google Scholar 

  13. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510:298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 2016;16:650–62.

    Article  CAS  PubMed  Google Scholar 

  15. Yu H, Wang H, Xu HR, Zhang YC, Yu XB, Wu MC, et al. Overexpression of MTHFD1 in hepatocellular carcinoma predicts poorer survival and recurrence. Future Oncol. 2019;15:1771–80.

    Article  CAS  PubMed  Google Scholar 

  16. Jarrold J, Davies CC. PRMTs and arginine methylation: cancer’s best-kept secret? Trends Mol Med. 2019;25:993–1009.

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50.

    Article  CAS  PubMed  Google Scholar 

  18. Hwang JW, Cho Y, Bae GU, Kim SN, Kim YK. Protein arginine methyltransferases: promising targets for cancer therapy. Exp Mol Med. 2021;53:788–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guccione E, Richard S. The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol. 2019;20:642–57.

    Article  CAS  PubMed  Google Scholar 

  20. Hu D, Gur M, Zhou Z, Gamper A, Hung MC, Fujita N, et al. Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun. 2015;6:8419.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Qiu T, Wu Y, Yang C, Li Y, Du G, et al. Arginine methyltransferase PRMT5 methylates and stabilizes KLF5 via decreasing its phosphorylation and ubiquitination to promote basal-like breast cancer. Cell Death Differ. 2021;28:2931–45.

    Article  CAS  PubMed  Google Scholar 

  22. Liang C, Shi S, Qin Y, Meng Q, Hua J, Hu Q, et al. Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut. 2020;69:888–900.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng TY, Yang YC, Wang HP, Tien YW, Shun CT, Huang HY, et al. Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene. 2018;37:1730–42.

    Article  CAS  PubMed  Google Scholar 

  24. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai Z, Li CF, Han F, Liu C, Zhang A, Hsu CC, et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis. Mol Cell. 2020;80:263–78.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, et al. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 2018;9:545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hitosugi T, Chen J. Post-translational modifications and the Warburg effect. Oncogene. 2014;33:4279–85.

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Long J, Gao Y, Zhang W, Han F, Xu C, et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat Cell Biol. 2019;21:214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai C, Gu S, Yu Y, Zhu Y, Zhang H, Yuan B, et al. PRMT5 enables robust STAT3 activation via arginine symmetric dimethylation of SMAD7. Adv Sci. 2021;8:2003047.

    Article  CAS  Google Scholar 

  30. Antonysamy S. The structure and function of the PRMT5:MEP50 complex. Subcell Biochem. 2017;83:185–94.

    Article  CAS  PubMed  Google Scholar 

  31. Deng W, Wang Y, Ma L, Zhang Y, Ullah S, Xue Y. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins. Brief Bioinform. 2017;18:647–58.

    CAS  PubMed  Google Scholar 

  32. Chen H, Xue Y, Huang N, Yao X, Sun Z. MeMo: a web tool for prediction of protein methylation modifications. Nucleic Acids Res. 2006;34:W249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. The UniProt C. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69.

    Article  CAS  Google Scholar 

  34. Li G, Wu J, Li L, Jiang P. p53 deficiency induces MTHFD2 transcription to promote cell proliferation and restrain DNA damage. Proc Natl Acad Sci USA. 2021;118:e2019822118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang HF, Hughes CS, Li W, He JZ, Surdez D, El-Naggar AM, et al. Proteomic screens for suppressors of anoikis identify IL1RAP as a promising surface target in Ewing sarcoma. Cancer Discov. 2021;11:2884–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang B, Ye Y, Yang X, Liu B, Wang Z, Chen S, et al. SIRT2-dependent IDH1 deacetylation inhibits colorectal cancer and liver metastases. EMBO Rep. 2020;21:e48183.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Wang S, Jiang B, Huang L, Ji Z, Li X, et al. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat Commun. 2017;8:13732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoxhaj G, Ben-Sahra I, Lockwood SE, Timson RC, Byles V, Henning GT, et al. Direct stimulation of NADP(+) synthesis through Akt-mediated phosphorylation of NAD kinase. Science. 2019;363:1088–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou L, Wang F, Sun R, Chen X, Zhang M, Xu Q, et al. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep. 2016;17:811–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rao X, Duan X, Mao W, Li X, Li Z, Li Q, et al. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun. 2015;6:8468.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu Y, Gu L, Lin X, Liu C, Lu B, Cui K, et al. Dynamic regulation of ME1 phosphorylation and acetylation affects lipid metabolism and colorectal tumorigenesis. Mol Cell. 2020;77:138–49.e5.

    Article  CAS  PubMed  Google Scholar 

  42. Li W, Koster J, Xu H, Chen CH, Xiao T, Liu JS, et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 2015;16:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gustafsson R, Jemth AS, Gustafsson NM, Farnegardh K, Loseva O, Wiita E, et al. Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res. 2017;77:937–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (82022052, 82073112 and 81930065), Natural Science Foundation of Guangdong Province (2019A1515010233), Science and Technology Program of Guangdong (2019B020227002), Guangdong Esophageal Cancer Institute Science and Technology Program (M202003), National Natural Science Foundation of China (81802452, 82002465), Bureau of Education of Guangzhou Municipality (202032801) and CAMS Innovation Fund for Medical Sciences (CIFMS) (2019-I2M-5-036).

Author information

Authors and Affiliations

Authors

Contributions

QM, YXL, CW, ZXW, and HQJ designed this work. QM and CW performed most of the experiments with the help of JFL, YTT, KL, XJL, and YH. QM, YXL, and ZXW analyzed and interpreted the data. QM, CW, KY, and YXL wrote this paper with the help of JJL, YTT, HL, and YYX. ZLZ, BL, HQJ, RHX edited and revised this paper. All the authors read and approved the final paper.

Corresponding authors

Correspondence to Rui-Hua Xu or Huai-Qiang Ju.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Lu, YX., Wei, C. et al. Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis. Oncogene 41, 3912–3924 (2022). https://doi.org/10.1038/s41388-022-02387-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02387-7

This article is cited by

Search

Quick links