Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insufficient ablation induces E3-ligase Nedd4 to promote hepatocellular carcinoma progression by tuning TGF-β signaling

Abstract

Thermal ablation is a main curative therapy for early-stage hepatocellular carcinoma (HCC). However, insufficient ablation has been shown to promote HCC progression. E3 ligases have been approved to play important roles in malignant tumors. Whether E3 ligases are involved in HCC progression caused by insufficient ablation remains unclear. Herein, using RNA-sequencing coupled with an in vitro loss-of-function screen, we found that the E3 ligase Neuronal Precursor cell-expressed Developmentally Downregulated 4 (Nedd4) was upregulated in HCC insufficient ablation tissues and promoted HCC cells migration. The upregulation of Nedd4 was induced by METTL14-mediated N6-methyladenosine modification after sublethal heat treatment. Knockdown of Nedd4 inhibited HCC metastasis and growth in vitro and in vivo. Mechanistically, Nedd4 enhanced TGF-β signal transduction mediated tumor progression by directly binding to TGF-β type I receptor (TGFBR1) and forming K27-linked ubiquitin at Lysine 391. Additionally, the adverse effect on HCC of sublethal heat treatment was mediated by Nedd4. Clinically, high Nedd4 expression was positively correlated with aggressive tumor phenotypes and poor prognosis in HCC patients. Patient-derived xenograft (PDX) model confirmed this conclusion. Collectively, this study demonstrated that Nedd4 induced by insufficient ablation plays a crucial role in promoting HCC progression and provides a novel therapeutic target for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nedd4 was induced by insufficient ablation in HCC.
Fig. 2: Knockdown of Nedd4 inhibited HCC metastasis and growth.
Fig. 3: Overexpression of wild type Nedd4 rescued HCC progression in Nedd4 knockdown cells.
Fig. 4: Nedd4 enhanced EMT through TGF-β/smad2/3 signaling.
Fig. 5: Nedd4 directly recognized TGFBR1 through its WW domain and ubiquitinated K27-poly-ubiquitin chain on TGFBR1 Lysine 391.
Fig. 6: HCC cell metastasis is promoted by sublethal heat stress in a Nedd4-dependent way.
Fig. 7: Clinical significance of Nedd4 inhibition in HCC.
Fig. 8: Working model.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  3. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67:358–80.

    Article  PubMed  Google Scholar 

  4. Lee DH, Lee JM, Lee JY, Kim SH, Yoon JH, Kim YJ, et al. Radiofrequency ablation of hepatocellular carcinoma as first-line treatment: long-term results and prognostic factors in 162 patients with cirrhosis. 2014: 900–9.

  5. Liu W, Zheng Y, He W, Zou R, Qiu J, Shen J, et al. Microwave vs radiofrequency ablation for hepatocellular carcinoma within the Milan criteria: a propensity score analysis. Alimentary Pharmacol Therapeutics. 2018;48:671–81.

    Article  Google Scholar 

  6. Chu KF, Dupuy DE. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199–208.

    Article  CAS  PubMed  Google Scholar 

  7. Rape M. Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol. 2018;19:59–70.

    Article  CAS  PubMed  Google Scholar 

  8. Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 2019;20:156–74.

    Article  CAS  PubMed  Google Scholar 

  9. Yang X, Qian K. Protein O-GlcNAcylation: Emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–53.

    Article  CAS  PubMed  Google Scholar 

  11. Lu PJ, Zhou XZ, Shen M, Lu KP. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999;283:1325–8.

    Article  CAS  PubMed  Google Scholar 

  12. Li JJ, Wang R, Lama R, Wang X, Floyd ZE, Park EA, et al. Ubiquitin Ligase NEDD4 regulates PPARgamma stability and adipocyte differentiation in 3T3-L1 cells. Sci Rep. 2016;6:38550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chesarino NM, McMichael TM, Yount JS. E3 Ubiquitin Ligase NEDD4 promotes influenza virus infection by decreasing levels of the antiviral protein IFITM3. PLoS Pathog. 2015;11:e1005095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Li Y, Zhang L, Zhou J, Luo S, Huang R, Zhao C, et al. Nedd4 E3 ubiquitin ligase promotes cell proliferation and autophagy. Cell Prolif. 2015;48:338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun A, Wei J, Childress C, Shaw JHT, Peng K, Shao G, et al. The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy. Autophagy. 2017;13:522–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shao G, Wang R, Sun A, Wei J, Peng K, Dai Q, et al. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells. Mol Cancer. 2018;17:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hang X, Zhu S, Di H, Wu Z, Chu K, Wang J, et al. NEDD4 depletion inhibits hepatocellular carcinoma growth via targeting PTEN. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol. 2016;39:768–79.

    Article  CAS  Google Scholar 

  18. Huang ZJ, Zhu JJ, Yang XY, Biskup E. NEDD4 promotes cell growth and migration via PTEN/PI3K/AKT signaling in hepatocellular carcinoma. Oncol Lett. 2017;14:2649–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.

    Article  CAS  PubMed  Google Scholar 

  20. Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136:3699–714.

    Article  CAS  PubMed  Google Scholar 

  21. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000;6:1365–75.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Zhou F, Garcia de Vinuesa A, de Kruijf EM, Mesker WE, Hui L, et al. TRAF4 promotes TGF-beta receptor signaling and drives breast cancer metastasis. Mol Cell. 2013;51:559–72.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Fan Y, Xie F, Zhou H, Jin K, Shao L, et al. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun. 2017;8:2116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Derynck R, Turley SJ, Akhurst RJ. TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18:9–34.

    Article  PubMed  Google Scholar 

  25. Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, et al. N(6)-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating beta-catenin signaling. Mol Cancer. 2020;19:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Niu Y, Lin Z, Wan A, Sun L, Yan S, Liang H, et al. Loss-of-function genetic screening identifies aldolase a as an essential driver for liver cancer cell growth under hypoxia. Hepatology. 2021;74:1461–79.

    Article  CAS  PubMed  Google Scholar 

  27. Lian Q, Wang S, Zhang G, Wang D, Luo G, Tang J, et al. HCCDB: A database of hepatocellular carcinoma expression atlas. Genomics Proteom Bioinforma. 2018;16:269–75.

    Article  Google Scholar 

  28. Su T, Liao J, Dai Z, Xu L, Chen S, Wang Y, et al. Stress-induced phosphoprotein 1 mediates hepatocellular carcinoma metastasis after insufficient radiofrequency ablation. Oncogene. 2018;37:3514–27.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Bei J, Liu M, Huang J, Xie L, Huang W, et al. Sublethal heat stress-induced O-GlcNAcylation coordinates the Warburg effect to promote hepatocellular carcinoma recurrence and metastasis after thermal ablation. Cancer Lett. 2021;518:23–34.

    Article  CAS  PubMed  Google Scholar 

  30. Su T, Huang M, Liao J, Lin S, Yu P, Yang J, et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma metastasis through N6-Methyladenosine mRNA Methylation-dependent mechanism. Hepatology. 2021;74:1339–56.

    Article  CAS  PubMed  Google Scholar 

  31. Nieto MA. Epithelial plasticity: A common theme in embryonic and cancer cells. Science. 2013;342:1234850.

    Article  PubMed  CAS  Google Scholar 

  32. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998;17:3091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, et al. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun. 2017;8:347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Han Z, Lu J, Liu Y, Davis B, Lee MS, Olson MA, et al. Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J Virol. 2014;88:7294–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Liu Z, Chen X, Li J, Yao W, Huang S, et al. A multi-lock inhibitory mechanism for fine-tuning enzyme activities of the HECT family E3 ligases. Nat Commun. 2019;10:3162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang L, Zhu B, Wang S, Wu Y, Zhan W, Xie S, et al. Regulation of glioma migration and invasion via modification of Rap2a activity by the ubiquitin ligase Nedd4-1. Oncol Rep. 2017;37:2565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu C, Fan CD, Wang X. Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene. 2015;34:281–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou W, Xu J, Zhao Y, Sun Y. SAG/RBX2 is a novel substrate of NEDD4-1 E3 ubiquitin ligase and mediates NEDD4-1 induced chemosensitization. Oncotarget. 2014;5:6746–55.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huang Z, Choi BK, Mujoo K, Fan X, Fa M, Mukherjee S, et al. The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling. Oncogene. 2015;34:1105–15.

    Article  CAS  PubMed  Google Scholar 

  42. Wan T, Lei Z, Tu B, Wang T, Wang J, Huang F. NEDD4 Induces K48-linked degradative ubiquitination of Hepatitis B Virus X protein and inhibits HBV-associated HCC progression. Front Oncol. 2021;11:625169.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu PY, Xu N, Malyukova A, Scarlett CJ, Sun YT, Zhang XD, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 2013;20:503–14.

    Article  CAS  PubMed  Google Scholar 

  44. Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26:399–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Damgaard RB. The ubiquitin system: From cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28:423–6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci. 2016;73:3497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K. The K48-K63 branched ubiquitin chain regulates NF-kappaB signaling. Mol Cell. 2016;64:251–66.

    Article  CAS  PubMed  Google Scholar 

  48. Gatti M, Pinato S, Maiolica A, Rocchio F, Prato MG, Aebersold R, et al. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep. 2015;10:226–38.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao Z, Wu J, Liu X, Liang M, Zhou X, Ouyang S, et al. Insufficient radiofrequency ablation promotes proliferation of residual hepatocellular carcinoma via autophagy. Cancer Lett. 2018;421:73–81.

    Article  CAS  PubMed  Google Scholar 

  50. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (No. 81772625, No. 81972301 and No. 81802421). Guangzhou Science and Technology Program of China (No. 201804020093).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BL and YY. Methodology: KL, YN, YY and YS, Investigation: CZ and ZQ, Visualization: ZH and DZ. Statistical analysis: ZL and KL. Supervision: BL, YY, and CZ. Writing—original draft: KL and YN. Writing—review & editing: BL, WH, and JQ.

Corresponding authors

Correspondence to Yunfei Yuan or Binkui Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study complied with the standards of the 1975 Declaration of Helsinki and the experiments were approved by the Ethics Committee of Sun Yat-sen University Cancer Center (Approval No: GZR2017-116). The animal experiments were approved by the institutional ethics committee of Sun Yat-sen University, Guangzhou, China (Approval No: L102012019120E).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Niu, Y., Yuan, Y. et al. Insufficient ablation induces E3-ligase Nedd4 to promote hepatocellular carcinoma progression by tuning TGF-β signaling. Oncogene 41, 3197–3209 (2022). https://doi.org/10.1038/s41388-022-02334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02334-6

This article is cited by

Search

Quick links