Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRISPR interference and activation of the microRNA-3662-HBP1 axis control progression of triple-negative breast cancer

Abstract

MicroRNA-3662 (miR-3662) is minimally expressed in normal human tissues but is highly expressed in all types of cancers, including breast cancer. As determined with The Cancer Genome Atlas dataset, miR-3662 expression is higher in triple-negative breast cancers (TNBCs) and African American breast cancers than in other breast cancer types. However, the functional role of miR-3662 remains a topic of debate. Here, we found that inhibition or knockout of endogenous, mature miR-3662 in TNBC cells suppresses proliferation and migration in vitro and tumor growth and metastasis in vivo. Functional analysis revealed that, for TNBC cells, knockout of miR-3662 reduces the activation of Wnt/β-catenin signaling. Furthermore, using CRISPR-mediated miR-3662 activation and repression, dual-luciferase assays, and miRNA/mRNA immunoprecipitation assays, we established that HMG-box transcription factor 1 (HBP-1), a Wnt/β-catenin signaling inhibitor, is a target of miR-3662 and is most likely responsible for miR-3662-mediated TNBC cell proliferation. Our results suggest that miR-3662 has an oncogenic function in tumor progression and metastasis via an miR-3662-HBP1 axis, regulating the Wnt /β-catenin signaling pathway in TNBC cells. Since miR-3662 expression occurs a tumor-specific manner, it is a promising biomarker and therapeutic target for patients who have TNBCs with dysregulation of miR-3662, especially African Americans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-3662 KO inhibited cell proliferation and migration of TNBC cells.
Fig. 2: miR-3662 KO reduced tumor growth and metastasis of TNBC xenografts in NSG mice.
Fig. 3: miR-3662 KO repressed the activation of Wnt/β-catenin signaling in MDA-MB-231 cells.
Fig. 4: Identification of HBP1 as a target gene of miR-3662 in MDA-MB-231 cells.
Fig. 5: Validation of miR-3662-HBP1 axis-mediated regulation of the Wnt/β-catenin signaling pathway in BT-20 cells.
Fig. 6: miR-3662-mediated functional role and post-transcriptional regulation of HBP1.
Fig. 7: Regulation of the miR-3662-HBP1 axis and its effect on growth and the Wnt signaling pathway.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  2. Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Disco. 2019;9:176–98.

    Article  CAS  Google Scholar 

  3. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.

    Article  PubMed  Google Scholar 

  4. Caparica R, Lambertini M, de Azambuja E. How I treat metastatic triple-negative breast cancer. ESMO Open. 2019;4:e000504.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article  Google Scholar 

  6. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5:1122–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122:6–7.

    Article  CAS  PubMed  Google Scholar 

  8. van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015;17:21.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tang J, Ahmad A, Sarkar FH. The role of microRNAs in breast cancer migration, invasion and metastasis. Int J Mol Sci. 2012;13:13414–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD, et al. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer. 2010;9:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu S, Tao Z, Hai B, Liang H, Shi Y, Wang T, et al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun. 2016;7:11406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Powrozek T, Krawczyk P, Kowalski DM, Winiarczyk K, Olszyna-Serementa M, Milanowski J. Plasma circulating microRNA-944 and microRNA-3662 as potential histologic type-specific early lung cancer biomarkers. Transl Res. 2015;166:315–23.

    Article  CAS  PubMed  Google Scholar 

  13. Powrozek T, Mlak R, Dziedzic M, Malecka-Massalska T, Sagan D. Analysis of primary-miRNA-3662 and its mature form may improve detection of the lung adenocarcinoma. J Cancer Res Clin Oncol. 2017;143:1941–6.

    Article  CAS  PubMed  Google Scholar 

  14. Maharry SE, Walker CJ, Liyanarachchi S, Mehta S, Patel M, Bainazar MA, et al. Dissection of the major hematopoietic quantitative trait locus in chromosome 6q23.3 identifies miR-3662 as a player in hematopoiesis and acute myeloid leukemia. Cancer Discov. 2016;6:1036–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Z, Zuo X, Zhang Y, Han G, Zhang L, Wu J, et al. MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF-1alpha-mediated Warburg effect. Cell Death Dis. 2018;9:549.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ye J, Xiao X, Han Y, Fan D, Zhu Y, Yang L. MiR-3662 suppresses cell growth, invasion and glucose metabolism by targeting HK2 in hepatocellular carcinoma cells. Neoplasma. 2020;67:773–81.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu L, Liu Z, Dong R, Wang X, Zhang M, Guo X, et al. MicroRNA-3662 targets ZEB1 and attenuates the invasion of the highly aggressive melanoma cell line A375. Cancer Manag Res. 2019;11:5845–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansen TB, Bramsen JB, Kjems J. Re-inspection of small RNA sequence datasets reveals several novel human miRNA genes. PLoS One. 2010;5:e10961.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272:1023–6.

    Article  CAS  PubMed  Google Scholar 

  20. Shi Y, Yang F, Wei S, Xu G. Identification of key genes affecting results of hyperthermia in osteosarcoma based on integrative ChIP-Seq/TargetScan analysis. Med Sci Monit. 2017;23:2042–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao Y, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods. 2016;13:1043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  CAS  PubMed  Google Scholar 

  25. Cicekdal MB, Kazan BT, Tuna BG, Ozorhan U, Ekici ID, Zhu F, et al. Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor-alpha breast cancer mouse model. Br J Nutr. 2021;125:1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Shih HH, Xiu M, Berasi SP, Sampson EM, Leiter A, Paulson KE, et al. HMG box transcriptional repressor HBP1 maintains a proliferation barrier in differentiated liver tissue. Mol Cell Biol. 2001;21:5723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sampson EM, Haque ZK, Ku MC, Tevosian SG, Albanese C, Pestell RG, et al. Negative regulation of the Wnt-beta-catenin pathway by the transcriptional repressor HBP1. EMBO J. 2001;20:4500–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berasi SP, Xiu M, Yee AS, Paulson KE. HBP1 repression of the p47phox gene: cell cycle regulation via the NADPH oxidase. Mol Cell Biol. 2004;24:3011–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yee AS, Paulson EK, McDevitt MA, Rieger-Christ K, Summerhayes I, Berasi SP, et al. The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene. 2004;336:1–13.

    Article  CAS  PubMed  Google Scholar 

  30. Xiu M, Kim J, Sampson E, Huang CY, Davis RJ, Paulson KE, et al. The transcriptional repressor HBP1 is a target of the p38 mitogen-activated protein kinase pathway in cell cycle regulation. Mol Cell Biol. 2003;23:8890–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE, et al. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J Biol Chem. 2006;281:10865–75.

    Article  CAS  PubMed  Google Scholar 

  32. Bollaert E, de Rocca Serra A, Demoulin JB. The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways. Cell Mol Life Sci. 2019;76:1529–39.

    Article  CAS  PubMed  Google Scholar 

  33. Howe LR, Brown AM. Wnt signaling and breast cancer. Cancer Biol Ther. 2004;3:36–41.

    Article  CAS  PubMed  Google Scholar 

  34. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA. 2000;97:4262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A, et al. beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol. 2011;24:209–31.

    Article  CAS  PubMed  Google Scholar 

  36. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010;176:2911–20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu J, Prosperi JR, Choudhury N, Olopade OI, Goss KH. beta-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One. 2015;10:e0117097.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30:1473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Li X, Liu W, Li B, Chen D, Hu F, et al. MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer. Oncogene. 2019;38:4820–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang M, Zhang G, Zhang Y, Cui X, Wang S, Gao S, et al. Fibrinogen alpha chain knockout promotes tumor growth and metastasis through integrin-AKT signaling pathway in lung cancer. Mol Cancer Res. 2020;18:943–54.

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Liu R, Ye P, Wong C, Chen GY, Zhou P, et al. Intracellular CD24 disrupts the ARF-NPM interaction and enables mutational and viral oncogene-mediated p53 inactivation. Nat Commun. 2015;6:5909.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang W, Yi B, Wang C, Chen D, Bae S, Wei S, et al. Silencing of CD24 enhances the PRIMA-1-induced restoration of mutant p53 in prostate cancer cells. Clin Cancer Res. 2016;22:2545–54.

    Article  PubMed  Google Scholar 

  43. Liu R, Yi B, Wei S, Yang WH, Hart KM, Chauhan P, et al. FOXP3-miR-146-NF-kappaB axis and therapy for precancerous lesions in prostate. Cancer Res. 2015;75:1714–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang G, Zhang W, Li B, Stringer-Reasor E, Chu C, Sun L, et al. MicroRNA-200c and microRNA- 141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Res. 2017;19:73.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gao S, Wang Y, Wang M, Li Z, Zhao Z, Wang RX, et al. MicroRNA-155, induced by FOXP3 through transcriptional repression of BRCA1, is associated with tumor initiation in human breast cancer. Oncotarget. 2017;8:41451–64.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY, et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell. 2009;16:336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, et al. FOXP3 controls an miR-146/NF-kappaB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res. 2015;75:1703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu R, Wang L, Chen G, Katoh H, Chen C, Liu Y, et al. FOXP3 upregulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus. Cancer Res. 2009;69:2252–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Donald Hill for editorial assistance in preparing this manuscript. This work was supported by grants from the National Cancer Institute (CA223077, CA238273 and CA242917 for R. Liu) and the Breast Cancer Research Foundation of Alabama (L. Wang). Results are based, in part, upon data generated by TCGA Research Network: http://cancergenome.nih.gov/.

Author information

Authors and Affiliations

Authors

Contributions

Conception, design, and financial support: LW, RL. Development of methodology: BY, LW, RL. Acquisition of data (bench/animal works, acquired data, etc.): BY, SW, XW, ZL, CZ, ML, SG. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): SW, SB, ES, LW, RL. Writing, review, and/or revision of the manuscript: BY, LW, RL. Pathology analysis: SW. Study supervision: LW, RL.

Corresponding authors

Correspondence to Lizhong Wang or Runhua Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, B., Wang, S., Wang, X. et al. CRISPR interference and activation of the microRNA-3662-HBP1 axis control progression of triple-negative breast cancer. Oncogene 41, 268–279 (2022). https://doi.org/10.1038/s41388-021-02089-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02089-6

This article is cited by

Search

Quick links