Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway

Abstract

The therapeutic efficacy of 5-fluorouracil (5-FU) is often reduced by the development of drug resistance. We observed significant upregulation of lipocalin 2 (LCN2) expression in a newly established 5-FU-resistant colorectal cancer (CRC) cell line. In this study, we demonstrated that 5-FU-treated CRC cells developed resistance through LCN2 upregulation caused by LCN2 promoter demethylation and that feedback between LCN2 and NF-κB further amplified LCN2 expression. High LCN2 expression was associated with poor prognosis in CRC patients. LCN2 attenuated the cytotoxicity of 5-FU by activating the SRC/AKT/ERK-mediated antiapoptotic program. Mechanistically, the LCN2-integrin β3 interaction enhanced integrin β3 stability, thus recruiting SRC to the cytomembrane for autoactivation, leading to downstream AKT/ERK cascade activation. Targeting LCN2 or SRC compromised the growth of CRC cells with LCN2-induced 5-FU resistance. Our findings demonstrate a novel mechanism of acquired resistance to 5-FU, suggesting that LCN2 can be used as a biomarker and/or therapeutic target for advanced CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LCN2 is upregulated in 5-FU-resistant CRC cells.
Fig. 2: LCN2 expression is associated with liver metastasis, recurrence, and prognosis in patients with CRC.
Fig. 3: LCN2 confers 5-FU resistance on CRC cells.
Fig. 4: LCN2 drives 5-FU resistance in CRC cells through SRC-mediated AKT/ERK cascades.
Fig. 5: The LCN2-integrin β3 interaction recruits SRC to the cytomembrane for phosphorylation.
Fig. 6: LCN2 expression is elevated through promoter CpG demethylation and LCN2/NF-κB feedback.
Fig. 7: Proposed molecular mechanism.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Chen L, She X, Wang T, He L, Shigdar S, Duan W, et al. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles. Nanoscale. 2015;7:14080–92.

    CAS  PubMed  Google Scholar 

  3. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.

    CAS  PubMed  Google Scholar 

  4. Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N. 5-Fluorouracil resistance mechanisms in colorectal cancer: from classical pathways to promising processes. Cancer Sci. 2020;111:3142–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang TL, Diaz LA Jr, Romans K, Bardelli A, Saha S, Galizia G, et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci USA 2004;101:3089–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 2000;6:1322–7.

    CAS  PubMed  Google Scholar 

  7. Wang H, Li JM, Wei W, Yang R, Chen D, Ma XD, et al. Regulation of ATP-binding cassette subfamily B member 1 by Snail contributes to chemoresistance in colorectal cancer. Cancer Sci. 2020;111:84–97.

    CAS  PubMed  Google Scholar 

  8. Wilson BJ, Schatton T, Zhan Q, Gasser M, Ma J, Saab KR, et al. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res. 2011;71:5307–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Violette S, Poulain L, Dussaulx E, Pepin D, Faussat AM, Chambaz J, et al. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer. 2002;98:498–504.

    CAS  PubMed  Google Scholar 

  10. Tominaga T, Iwahashi M, Takifuji K, Hotta T, Yokoyama S, Matsuda K, et al. Combination of p53 codon 72 polymorphism and inactive p53 mutation predicts chemosensitivity to 5-fluorouracil in colorectal cancer. Int J Cancer. 2010;126:1691–701.

    CAS  PubMed  Google Scholar 

  11. Pothuraju R, Rachagani S, Krishn SR, Chaudhary S, Nimmakayala RK, Siddiqui JA, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37–01156.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de la Cruz-Morcillo MA, Valero ML, Callejas-Valera JL, Arias-González L, Melgar-Rojas P, Galán-Moya EM, et al. P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. Oncogene. 2012;31:1073–85.

    PubMed  Google Scholar 

  13. Zou ZW, Chen HJ, Yu JL, Huang ZH, Fang S, Lin XH. Gap junction composed of connexin43 modulates 5 fluorouracil, oxaliplatin and irinotecan resistance on colorectal cancers. Mol Med Rep. 2016;14:4893–4900.

    CAS  PubMed  Google Scholar 

  14. Abella V, Scotece M, Conde J, Gómez R, Lois A, Pino J, et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers 2015;20:565–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Q, Li S, Tang X, Liang L, Wang F, Du H. Lipocalin 2 protects against escherichia coli infection by modulating neutrophil and macrophage function. Front Immunol. 2019;10:2594.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Borkham-Kamphorst E, Van de Leur E, Meurer SK, Buhl EM, Weiskirchen R. N-glycosylation of lipocalin 2 is not required for secretion or exosome targeting. Front Pharmacol. 2018;9:426.

    PubMed  PubMed Central  Google Scholar 

  17. Santiago-Sánchez GS, Pita-Grisanti V, Quiñones-Díaz B, Gumpper K, Cruz-Monserrate Z, Vivas-Mejía PE. Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci. 2020;21:4365.

    PubMed Central  Google Scholar 

  18. Ong KL, Wu L, Januszewski AS, O’Connell RL, Xu A, Rye KA, et al. Relationships of adipocyte-fatty acid binding protein and lipocalin 2 with risk factors and chronic complications in type 2 diabetes and effects of fenofibrate: A fenofibrate Intervention and event lowering in diabetes sub-study. Diabetes Res Clin Pract. 2020;169:108450.

    CAS  PubMed  Google Scholar 

  19. Miao Q, Ku AT, Nishino Y, Howard JM, Rao AS, Shaver TM, et al. Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2. Nat Commun. 2014;5:4088 https://doi.org/10.1038/ncomms5088.

    Article  CAS  PubMed  Google Scholar 

  20. Viau A, El KK, Laouari D, Burtin M, Nguyen C, Mori K, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Investig. 2010;120:4065–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, et al. Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci USA. 2009;106:3913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, et al. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment. Cancer Res. 2017;77:2647–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tung MC, Hsieh SC, Yang SF, Cheng CW, Tsai RT, Wang SC, et al. Knockdown of lipocalin-2 suppresses the growth and invasion of prostate cancer cells. Prostate. 2013;73:1281–90.

    CAS  PubMed  Google Scholar 

  24. Chi Y, Remsik J, Kiseliovas V, Derderian C, Sener U, Alghader M, et al. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science. 2020;369:276–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun Y, Yokoi K, Li H, Gao J, Hu L, Liu B, et al. NGAL expression is elevated in both colorectal adenoma-carcinoma sequence and cancer progression and enhances tumorigenesis in xenograft mouse models. Clin Cancer Res. 2011;17:4331–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo X, Li Q, Wang YF, Wang TY, Chen SJ, Tian ZW. Reduced lipocalin 2 expression contributes to vincristine resistance in human colon cancer cells. Recent Pat Anticancer Drug Discov. 2018;13:248–54.

    CAS  PubMed  Google Scholar 

  27. Leung L, Radulovich N, Zhu CQ, Organ S, Bandarchi B, Pintilie M. et al. Lipocalin2 promotes invasion, tumorigenicity and gemcitabine resistance in pancreatic ductal adenocarcinoma. PLoS ONE. 2012;7:e46677.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim SL, Min IS, Park YR, Lee ST, Kim SW. Lipocalin 2 inversely regulates TRAIL sensitivity through p38 MAPK-mediated DR5 regulation in colorectal cancer. Int J Oncol. 2018;53:2789–99.

    CAS  PubMed  Google Scholar 

  29. Huang Z, Zhang Y, Li H, Zhou Y, Zhang Q, Chen R, et al. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF- B pathway activation through RPS3. Cell Death Dis. 2019;10:936–2177.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Arachiche A, Augereau O, Decossas M, Pertuiset C, Gontier E, Letellier T, et al. Localization of PTP-1B, SHP-2, and Src exclusively in rat brain mitochondria and functional consequences. J Biol Chem. 2008;283:24406–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci USA. 2003;100:13298–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenzweig SA. Acquired resistance to drugs targeting tyrosine kinases. Adv Cancer Res. 2018;138:71–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang X, Chen Y, Hao L, Hou A, Chen X, Li Y, et al. Macrophages induce resistance to 5-fluorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett. 2016;381:305–13.

    CAS  PubMed  Google Scholar 

  34. Wang Z, Zhao X, Wang W, Liu Y, Li Y, Gao J, et al. ZBTB7 evokes 5-fluorouracil resistance in colorectal cancer through the NF B signaling pathway. Int. J. Oncol. 2018;53:2102–10.

    CAS  PubMed  Google Scholar 

  35. Belli S, Esposito D, Servetto A, Pesapane A, Formisano L, Bianco R. c-Src and EGFR inhibition in molecular cancer therapy: what else can we improve? Cancers. 2020;12:1489.

    CAS  PubMed Central  Google Scholar 

  36. Martínez-Pérez J, Lopez-Calderero I, Saez C, Benavent M, Limon ML, Gonzalez-Exposito R, et al. Prognostic relevance of Src activation in stage II-III colon cancer. Hum Pathol. 2017;67:119–25.

    PubMed  Google Scholar 

  37. Griffiths GJ, Koh MY, Brunton VG, Cawthorne C, Reeves NA, Greaves M, et al. Expression of kinase-defective mutants of c-Src in human metastatic colon cancer cells decreases Bcl-xL and increases oxaliplatin- and Fas-induced apoptosis. J Biol Chem. 2004;279:46113–21.

    CAS  PubMed  Google Scholar 

  38. Jin W. Regulation of Src family kinases during colorectal cancer development and its clinical implications. Cancers. 2020;12:1339.

    CAS  PubMed Central  Google Scholar 

  39. Perez M, Lucena-Cacace A, Marín-Gómez LM, Padillo-Ruiz J, Robles-Frias MJ, Saez C, et al. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaliplatin in tumors with high levels of phospho-Src. Oncotarget. 2016;7:33111–24.

    PubMed  PubMed Central  Google Scholar 

  40. Dunn EF, Iida M, Myers RA, Campbell DA, Hintz KA, Armstrong EA, et al. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene. 2011;30:561–74.

    CAS  PubMed  Google Scholar 

  41. Roskoski R Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res. 2015;94:9–25.

    CAS  PubMed  Google Scholar 

  42. Reinecke JB, Katafiasz D, Naslavsky N, Caplan S. Regulation of Src trafficking and activation by the endocytic regulatory proteins MICAL-L1 and EHD1. J Cell Sci. 2014;127:1684–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao R, Xi XD, Chen Z, Chen SJ, Meng G. Structural framework of c-Src activation by integrin 3. Blood. 2013;121:700–6.

    CAS  PubMed  Google Scholar 

  44. Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prevost N, et al. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med. 2009;15:1163–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer. 2014;14:747–53.

    CAS  PubMed  Google Scholar 

  46. Meka P, Jarjapu S, Nanchari SR, Vishwakarma SK, Edathara PM, Gorre M, et al. LCN2 promoter methylation status as novel predictive marker for microvessel density and aggressive tumor phenotype in breast cancer patients. Asian Pac J Cancer Prev. 2015;16:4965–9.

    PubMed  Google Scholar 

  47. Conde J, Otero M, Scotece M, Abella V, López V, Pino J, et al. E74-like factor 3 and nuclear factor- B regulate lipocalin-2 expression in chondrocytes. J Physiol. 2016;594:6133–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu C, Qiu S, Lu L, Zou J, Li WF, Wang O, et al. RSPO2-LGR5 signaling has tumour-suppressive activity in colorectal cancer. Nat Commun. 2014;5:3149.

    PubMed  Google Scholar 

  49. Chen T, Dai X, Dai J, Ding C, Zhang Z, Lin Z, et al. AFP promotes HCC progression by suppressing the HuR-mediated Fas/FADD apoptotic pathway. Cell Death Dis. 2020;11:822–03030.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong X, Liao W, Zhang L, Tu X, Hu J, Chen T, et al. RSPO2 suppresses colorectal cancer metastasis by counteracting the Wnt5a/Fzd7-driven noncanonical Wnt pathway. Cancer Lett. 2017;402:153–65.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 81972765 and 81772966) and Zhejiang Provincial Natural Science Foundation (No. LZ21H160007). The Superbiotek Inc. (Shanghai, China) provided CRC tissue microarray analysis. The authors also thank the Laboratory Animal Research Center in Wenzhou Medical University for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

WZ designed, performed experiments, analyzed the data, and was a major contributor in writing the manuscript. RP and ML analyzed and interpreted the patient data. QZ, ZW, SG and HL partially contributed to the experiments presented in this manuscript. ZL and YQ contributed to the animal care and experiments. SC and LL provided technical assistance. WL provided assistance in manuscript writing. XL conceived the study, designed the experiments, and wrote and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xincheng Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Pan, R., Lu, M. et al. Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway. Oncogene 40, 6369–6380 (2021). https://doi.org/10.1038/s41388-021-02029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02029-4

This article is cited by

Search

Quick links