Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer

Abstract

Although the role of isocitrate dehydrogenase (IDH) mutation in promoting cancer development has been well-characterized, the impact of wild-type IDH on cancer cells remains unclear. Here we show that the wild-type isocitrate dehydrogenase 2 (IDH2) is highly expressed in colorectal cancer (CRC) cells, and plays an unexpected role in protecting the cancer cells from oxidative damage. Genetic abrogation of IDH2 in CRC cells leads to reactive oxygen species (ROS)-mediated DNA damage and an accumulation of 8-oxoguanine with DNA strand breaks, which activates DNA damage response (DDR) with elevated γH2AX and phosphorylation of ataxia telangiectasia-mutated (ATM) protein, leading to a partial cell cycle arrest and eventually cell senescence. Mechanistically, the suppression of IDH2 results in a reduction of the tricarboxylic acid (TCA) cycle activity due to a decrease in the conversion of isocitrate to α-ketoglutarate (α-KG) with a concurrent decrease in NADPH production, leading to ROS accumulation and oxidative DNA damage. Importantly, abrogation of IDH2 inhibits CRC cell growth in vitro and in vivo, and renders CRC cells more vulnerable to DNA-damaging drugs. Screening of an FDA-approved drug library has identified oxaliplatin as a compound highly effective against CRC cells when IDH2 was suppressed. Our study has uncovered an important role of the wild-type IDH2 in protecting DNA from oxidative damage, and provides a novel biochemical basis for developing metabolic intervention strategy for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wild-type IDH2 was overexpressed in human colorectal cancer tissues.
Fig. 2: IDH2 expression is essential for CRC cell proliferation in vitro and tumor growth in vivo.
Fig. 3: Knockdown of IDH2 led to transcriptional activation of genes involved in the DNA damage response (DDR) pathways.
Fig. 4: Abrogation of wild-type IDH2 caused DNA strand breaks and rendered CRC cells more sensitive to radiation.
Fig. 5: IDH2 knockdown caused ROS accumulation and oxidative DNA damage leading to activation of the ATM pathway.
Fig. 6: Abrogation of IDH2 led to partial cell cycle arrest and senescence in CRC cells.
Fig. 7: DNA-damage response induced by IDH2 knockdown promotes DNA repair synthesis and sensitizes CRC cells to oxaliplatin.

Similar content being viewed by others

Data availability

The datasets generated or analyzed for the current study are available from the corresponding author on reasonable request.

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell.2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Dang L, Su SM. Isocitrate dehydrogenase mutation and (R)−2-hydroxyglutarate: from basic discovery to therapeutics development. Annu Rev Biochem. 2017;86:305–31.

    Article  CAS  PubMed  Google Scholar 

  3. Yan H, Bigner DD, Velculescu V, Parsons DW. Mutant metabolic enzymes are at the origin of gliomas. Cancer Res. 2009;69:9157–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene.2006;25:4675–82.

    Article  CAS  PubMed  Google Scholar 

  5. Yen KE, Bittinger MA, Su SM, Fantin VR. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene.2010;29:6409–17.

    Article  CAS  PubMed  Google Scholar 

  6. Dalziel K. Isocitrate dehydrogenase and related oxidative decarboxylases. FEBS Lett. 1980;117:K45–55.

    Article  PubMed  Google Scholar 

  7. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature.2009;462:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res. 2012;18:5562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N. Engl J Med. 2009;360:765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018;14:979–93.

    Article  CAS  PubMed  Google Scholar 

  11. Waitkus MS, Diplas BH, Yan H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 2018;34:186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McBrayer SK, Mayers JR, DiNatale GJ, Shi DD, Khanal J, Chakraborty AA, et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in Glioma. Cell.2018;175:101–.e125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ježek P. 2-Hydroxyglutarate in cancer cells. Antioxid Redox Signal. 2020;33:903–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, et al. Advances in the treatment of acute myeloid. Leukemia: N. Drugs N. Chall Cancer Discov. 2020;10:506–25.

    CAS  Google Scholar 

  15. Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene.2018;37:1949–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bergaggio E, Piva R. Wild-type IDH enzymes as actionable targets for cancer therapy. Cancers (Basel). 2019;11:563.

  17. Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics.2004;84:1014–20.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, He Y, Tan Z, Lu J, Li L, Song X, et al. Wild-type IDH2 promotes the Warburg effect and tumor growth through HIF1α in lung cancer. Theranostics.2018;8:4050–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu WR, Tian MX, Jin L, Yang LX, Ding ZB, Shen YH, et al. High expression of 5-hydroxymethylcytosine and isocitrate dehydrogenase 2 is associated with favorable prognosis after curative resection of hepatocellular carcinoma. J Exp Clin Cancer Res. 2014;33:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tian GY, Zang SF, Wang L, Luo Y, Shi JP, Lou GQ. Isocitrate dehydrogenase 2 suppresses the invasion of hepatocellular carcinoma cells via matrix metalloproteinase 9. Cell Physiol Biochem. 2015;37:2405–14.

    Article  CAS  PubMed  Google Scholar 

  21. Wu D. Isocitrate dehydrogenase 2 inhibits gastric cancer cell invasion via matrix metalloproteinase 7. Tumour Biol. 2016;37:5225–30.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou L, Wang F, Sun R, Chen X, Zhang M, Xu Q, et al. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep. 2016;17:811–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science.2006;314:268–74.

    Article  PubMed  CAS  Google Scholar 

  24. Lv Q, Xing S, Li Z, Li J, Gong P, Xu X, et al. Altered expression levels of IDH2 are involved in the development of colon cancer. Exp Ther Med. 2012;4:801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339:1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017; 67:177–93.

  27. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

  28. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51.

    Article  CAS  PubMed  Google Scholar 

  29. Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett. 1994;339:40–4.

    Article  CAS  PubMed  Google Scholar 

  30. Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ. Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett. 2006;580:5125–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sabharwal S, Schumacker P. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Klaunig J. Oxidative stress and cancer. Curr Pharm Des. 2018;24:4771–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis .2007;12:913–22.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016;231:2570–81.

    Article  CAS  PubMed  Google Scholar 

  35. Gorrini C, Harris I, Mak T. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.

    Article  CAS  PubMed  Google Scholar 

  36. Luo J, Robinson JP, Shi R. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress. Neurochem Int. 2005;47:449–57.

    Article  CAS  PubMed  Google Scholar 

  37. Cha H, Lee S, Hwan Kim S, Kim H, Lee DS, Lee HS, et al. Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis. Redox Biol. 2017;13:32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA, Stap J, et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res. 2015;75:4790–802.

    Article  CAS  PubMed  Google Scholar 

  39. Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: a comparison of the biological characteristics of citrus pectin and apple pectin. Sci Rep. 2018;8:13902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Molenaar RJ, Radivoyevitch T, Nagata Y, Khurshed M, Przychodzen B, Makishima H, et al. IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors. Clin Cancer Res. 2018;24:1705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci. 2016;73:2829–50.

    Article  CAS  PubMed  Google Scholar 

  42. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  43. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9:aal2463.

  44. Kong MJ, Han SJ, Kim JI, Park JW, Park KM. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase deficiency increases cisplatin-induced oxidative damage in the kidney tubule cells. Cell Death Dis. 2018;9:488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Torrens-Mas M, Pons DG, Sastre-Serra J, Oliver J, Roca P. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production. J Cell Biochem. 2017;118:397–406.

    Article  CAS  PubMed  Google Scholar 

  46. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  PubMed  Google Scholar 

  47. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia.2007;9:166–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Yanyu Zhang, Mingquan Zhang and Bing-ling Luo for technical assistance, Haijing Deng and Dr. Hui Zhang for helpful discussions. Some of the cartoons in this article were created using the drawing tools provided by BioRender (https://biorender.com). This work was support in part by grants from the National Key R&D Program of China (2020YFA0803300, 2018YFC0910203), and from the National Natural Science Foundation of China (81872440, 81672952).

Author information

Authors and Affiliations

Authors

Contributions

SQ designed and performed research, analyzed data, and drafted paper. WL performed animal experiments. CG, PZ, NM, and HZ participated in bioinformatics analysis and biochemical/cellular experiments. JL participated in research design and paper writing. SW and PH designed the supervised the research. All authors have read and approved the final paper.

Corresponding authors

Correspondence to Shijun Wen or Peng Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Lu, W., Glorieux, C. et al. Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer. Oncogene 40, 5880–5892 (2021). https://doi.org/10.1038/s41388-021-01968-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01968-2

This article is cited by

Search

Quick links