Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Chk2-PKM2 axis promotes metabolic control of vasculogenic mimicry formation in p53-mutated triple-negative breast cancer

Abstract

Vasculogenic mimicry (VM) formation, which participates in the process of neovascularization, is highly activated in p53-mutated triple-negative breast cancer (TNBC). Here, we show that Chk2 is negatively correlated with VM formation in p53-mutated TNBC. Its activation by DNA-damaging agents such as cisplatin, etoposide, and DPT reduces VM formation. Mechanistically, the Chk2-PKM2 axis plays an important role in the inhibition of VM formation at the level of metabolic regulation. Chk2 promotes the Chk2-PKM2 interaction through the Chk2 SCD (SQ/TQ cluster domain) and the PKM2 C domain. Furthermore, Chk2 promotes the nuclear export of PKM2 by phosphorylating PKM2 at Ser100. P-PKM2 S100 reduces VM formation by decreasing glucose flux, and the PKM2 S100A mutation abolishes the inhibition of glucose flux and VM formation induced by Chk2 activation. Overall, this study proposes a novel strategy of VM suppression through Chk2 induction, which prevents PKM2-mediated glucose flux in p53-mutated TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A lower level of Chk2 was associated with increased VM formation in p53-mutated TNBC.
Fig. 2: Chk2 activation reduced VM formation in p53-mutated TNBC cells.
Fig. 3: Chk2 activation inhibited VM formation in Matrigel plugs and a xenograft model in vivo.
Fig. 4: Chk2 activation was required for the interaction between PKM2 and Chk2.
Fig. 5: Chk2 phosphorylates PKM2 at Ser100 and promotes its nuclear export.
Fig. 6: P-PKM2 S100 reduced glucose flux and VM formation.
Fig. 7: Chk2 activation inhibited PKM2-mediated glucose flux and VM formation.
Fig. 8: A schematic diagram of the proposed mechanism.

Similar content being viewed by others

References

  1. Langer EM, Kendsersky ND, Daniel CJ, Kuziel GM, Pelz C, Murphy KM, et al. ZEB1-repressed microRNAs inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells. Oncogene. 2018;37:1005–19.

    Article  CAS  PubMed  Google Scholar 

  2. Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32:544–53.

    Article  CAS  PubMed  Google Scholar 

  3. Tang Q, Su Z, Gu W, Rustgi AK. Mutant p53 on the path to metastasis. Trends Cancer. 2020;6:62–73.

    Article  PubMed  Google Scholar 

  4. Vogiatzi F, Brandt DT, Schneikert J, Fuchs J, Grikscheit K, Wanzel M, et al. Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. Proc Natl Acad Sci USA. 2016;113:E8433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mukhopadhyay UK, Oturkar CC, Adams C, Wickramasekera N, Bansal S, Medisetty R, et al. TP53 status as a determinant of pro- vs anti-tumorigenic effects of estrogen receptor-beta in breast cancer. J Natl Cancer Inst. 2019;111:1202–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun Y, Wicha M. Leopold WRJMC. Regulation of metastasis-related gene expression by p53: a potential clinical implication. Mol Carcinog. 2015;24:25–28.

    Article  Google Scholar 

  7. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagenblast E, Soto M, Gutierrez-Angel S, Hartl CA, Gable AL, Maceli AR, et al. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature. 2015;520:358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV, et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene. 2013;32:1252–65.

    Article  CAS  PubMed  Google Scholar 

  10. Liu K, Lin FT, Graves JD, Lee YJ, Lin WC. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin. Proc Natl Acad Sci USA. 2017;114:E3766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’Er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, et al. TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med. 2018;22:3475–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hess AR, Seftor EA, Seftor REB, Hendrix MJCJCR. Phosphoinositide 3-kinase regulates membrane type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res. 2003;63:4757.

    CAS  PubMed  Google Scholar 

  15. Delgado-Bellido D, Fernandez-Cortes M, Rodriguez MI, Serrano-Saenz S, Carracedo A, Garcia-Diaz A, et al. VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death Differ. 2019;26:348–61.

    Article  CAS  PubMed  Google Scholar 

  16. Yang J, Lu Y, Lin YY, Zheng ZY, Fang JH, He S, et al. Vascular mimicry formation is promoted by paracrine TGF-beta and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma. Cancer Lett. 2016;383:18–27.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Sun H, Zhang D, Fan D, Zhang Y, Dong X, et al. TP53INP1 inhibits hypoxia‐induced vasculogenic mimicry formation via theROS/snail signalling axis in breast cancer. J Cell Mol Med. 2018;22:3475–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yu W, Ding J, He M, Chen Y, Wang R, Han Z, et al. Estrogen receptor beta promotes the vasculogenic mimicry (VM) and cell invasion via altering the lncRNA-MALAT1/miR-145-5p/NEDD9 signals in lung cancer. Oncogene. 2019;38:1225–38.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao N, Sun BC, Sun T, Ma YM, Zhao XL, Liu ZY, et al. Hypoxia-induced vasculogenic mimicry formation via VE-cadherin regulation by Bcl-2. Med Oncol. 2012;29:3599–607.

    Article  CAS  PubMed  Google Scholar 

  20. Williamson SC, Metcalf RL, Trapani F, Mohan S, Antonello J, Abbott B, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun. 2016;7:13322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quiros-Gonzalez I, Tomaszewski MR, Aitken SJ, Ansel-Bollepalli L, McDuffus LA, Gill M, et al. Optoacoustics delineates murine breast cancer models displaying angiogenesis and vascular mimicry. Br J Cancer. 2018;118:1098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu S, Ni C, Zhang D, Sun H, Dong X, Che N, et al. S1PR1 regulates the switch of two angiogenic modes by VE-cadherin phosphorylation in breast cancer. Cell Death Dis. 2019;10:200.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, Oliver FJ. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer. 2017;16:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang Q, Qin Y, Zhao J, Tang Y, Hu X, Zhong W, et al. Thymidine phosphorylase promotes malignant progression in hepatocellular carcinoma through pentose Warburg effect. Cell Death Dis. 2019;10:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Fernandez-Cortes M, Delgado-Bellido D, Oliver FJ. Vasculogenic mimicry: become an endothelial cell “but not so much”. Front Oncol. 2019;9:803.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang S, Zhang D, Sun B. Vasculogenic mimicry: current status and future prospects. Cancer Lett. 2007;254:157–64.

    Article  CAS  PubMed  Google Scholar 

  27. Bartkova J, Guldberg P, Gronbaek K, Koed K, Primdahl H, Moller K, et al. Aberrations of the Chk2 tumour suppressor in advanced urinary bladder cancer. Oncogene. 2004;23:8545–51.

    Article  CAS  PubMed  Google Scholar 

  28. Nayak D, Kumar A, Chakraborty S, Rasool RU, Amin H, Katoch A, et al. Inhibition of Twist1-mediated invasion by Chk2 promotes premature senescence in p53-defective cancer cells. Cell Death Differ. 2017;24:1275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JH, Paull TTJO. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene. 2007;26:7741–8.

    Article  CAS  PubMed  Google Scholar 

  30. Pommier Y, Weinstein JN, Aladjem MI, Kohn KW. Chk2 molecular interaction map and rationale for Chk2 inhibitors. Clin Cancer Res. 2006;12:2657–61.

    Article  CAS  PubMed  Google Scholar 

  31. Dai B, Zhao XF, Mazan-Mamczarz K, Hagner P, Corl S, Bahassi el M, et al. Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma. Nat Commun. 2011;2:402.

    Article  PubMed  CAS  Google Scholar 

  32. O’Neill T, Giarratani L, Chen P, Iyer L, Lee CH, Bobiak M, et al. Determination of substrate motifs for human Chk1 and hCds1/Chk2 by the oriented peptide library approach. J Biol Chem. 2002;277:16102–15.

    Article  PubMed  CAS  Google Scholar 

  33. Zhao W, Chen S, Hou X, Chen G, Zhao Y. CHK2 promotes anoikis and is associated with the progression of papillary thyroid cancer. Cell Physiol Biochem. 2018;45:1590–602.

    Article  CAS  PubMed  Google Scholar 

  34. Ashwell S, Zabludoff S. DNA damage detection and repair pathways-recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res. 2008;14:4032–7.

    Article  CAS  PubMed  Google Scholar 

  35. Perona R, Moncho-Amor V, Machado-Pinilla R, Belda-Iniesta C, Sanchez Perez I. Role of CHK2 in cancer development. Clin Transl Oncol. 2008;10:538–42.

    Article  CAS  PubMed  Google Scholar 

  36. Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaiff WT, et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Investig. 2012;122:1541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiao Z, Xue J, Sowin TJ, Zhang H. Differential roles of checkpoint kinase 1, checkpoint kinase 2, and mitogen-activated protein kinase-activated protein kinase 2 in mediating DNA damage-induced cell cycle arrest: implications for cancer therapy. Mol Cancer Ther. 2006;5:1935–43.

    Article  CAS  PubMed  Google Scholar 

  38. Lulli M, Del Coco L, Mello T, Sukowati C, Madiai S, Gragnani L, et al. DNA damage response protein CHK2 regulates metabolism in liver cancer. Cancer Res. 2021;81:2861–73.

    Article  CAS  PubMed  Google Scholar 

  39. Gong C, Liu B, Yao Y, Qu S, Luo W, Tan W, et al. Potentiated DNA damage response in circulating breast tumor cells confers resistance to chemotherapy. J Biol Chem. 2015;290:14811–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng J, Chen S, Lei YY, Han JX, Zhong WL, Wang XR, et al. Hsp90beta promotes aggressive vasculogenic mimicry via epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene. 2019;38:228–43.

    Article  CAS  PubMed  Google Scholar 

  41. Schneider JG, Finck BN, Ren J, Standley KN, Takagi M, Maclean KH, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 2006;4:377–89.

    Article  CAS  PubMed  Google Scholar 

  42. Kwon J, Lee S, Kim YN, Lee IH. Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response. Exp Mol Med. 2019;51:1–9.

    PubMed  PubMed Central  Google Scholar 

  43. Dando I, Cordani M, Donadelli M. Mutant p53 and mTOR/PKM2 regulation in cancer cells. IUBMB Life. 2016;68:722–6.

    Article  CAS  PubMed  Google Scholar 

  44. Yang P, Li Z, Fu R, Wu H, Li Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal. 2014;26:1853–62.

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Escudero J, Clemente C, Garcia-Weber D, Acin-Perez R, Millan J, Enriquez JA, et al. PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci Rep. 2019;9:15022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cheng TY, Yang YC, Wang HP, Tien YW, Shun CT, Huang HY, et al. Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene. 2018;37:1730–42.

    Article  CAS  PubMed  Google Scholar 

  47. Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016;7:12431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kilpivaara O, Bartkova J, Eerola H, Syrjakoski K, Vahteristo P, Lukas J, et al. Correlation of CHEK2 protein expression and c.1100delC mutation status with tumor characteristics among unselected breast cancer patients. Int J Cancer. 2005;113:575–80.

    Article  CAS  PubMed  Google Scholar 

  49. Aliouat-Denis CM, Dendouga N, Van den Wyngaert I, Goehlmann H, Steller U, van de Weyer I, et al. p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol Cancer Res. 2005;3:627–34.

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Research C-RJC. Dual induction of apoptosis and senescence in cancer cells by Chk2 activation: checkpoint activation as a strategy against cancer. Cancer Res. 2005;65:6017.

    Article  Google Scholar 

  51. Sullivan A, Yuille M, Repellin C, Reddy A, Crook TJO. Concomitant inactivation of p53 and Chk2 in breast cancer. Oncogene. 2002;21:1316–24.

    Article  CAS  PubMed  Google Scholar 

  52. Tat SK, Pelletier JP. Amiable… NJAR, Therapy. Treatment with ephrin B2 positively impacts the abnormal metabolism of human osteoarthritic chondrocytes. Arthritis Res Ther. 2009;11:1–10.

    Google Scholar 

  53. Hendrix MJC, Seftor EA, Hess AR. Seftor REBJNRC. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3:411–21.

    Article  CAS  PubMed  Google Scholar 

  54. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51:545–56.

    Article  CAS  PubMed  Google Scholar 

  55. Yang Z, Sun B, Li Y, Zhao X, Zhao X, Gu Q, et al. ZEB2 promotes vasculogenic mimicry by TGF-beta1 induced epithelial-to-mesenchymal transition in hepatocellular carcinoma. Exp Mol Pathol. 2015;98:352–9.

    Article  CAS  PubMed  Google Scholar 

  56. Li T, Wernersson R, Hansen RB, Horn H, Mercer J, Slodkowicz G, et al. A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods. 2017;14:61–64.

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Wu J, Liang G, Geng G, Yuan JJEA. CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci Adv. 2020;6:eaax5819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hsu P-C, Gopinath RK, Hsueh Y-A, Shieh S-Y. CHK2-mediated regulation of PARP1 in oxidative DNA damage response. Oncogene. 2018;38:1166–82.

    Article  PubMed  CAS  Google Scholar 

  59. Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun. 2017;8:14041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seo GJ, Kim SE, Lee YM, Lee JW, Lee JR, Hahn MJ, et al. Determination of substrate specificity and putative substrates of Chk2 kinase. Biochemical Biophysical Res Commun. 2003;304:339–43.

    Article  CAS  Google Scholar 

  61. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;14:1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature. 2011;480:118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, and cancer. Cancer Discov. 2015;5:1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20:597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo QQ, Wang SS, Zhang SS, Xu HD, Li XM, Guan Y, et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 2020;39:e103111.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Antoni L, Sodha N, Collins I, Garrett MD. CHK2 kinase: cancer susceptibility and cancer therapy—two sides of the same coin? Nat Rev Cancer. 2007;7:925–36.

    Article  CAS  PubMed  Google Scholar 

  67. Carlessi L, Buscemi G, Larson G, Hong Z, Wu JZ, Delia D. Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Therapeutics. 2007;6:935–44.

    Article  CAS  Google Scholar 

  68. Alkema NG, Tomar T, van der Zee AGJ, Everts M, Meersma GJ, Hollema H, et al. Checkpoint kinase 2 (Chk2) supports sensitivity to platinum-based treatment in high grade serous ovarian cancer. Gynecologic Oncol. 2014;133:591–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81872986, 81872889), the “Double First-Class” University project (CPU2018GF03), the 111 Project from the Ministry of Education of China, and the State Administration of Foreign Export Affairs of China (B18056), the Drug Innovation Major Project (2018ZX09711-001-007, 2018ZX09735002-003).

Author information

Authors and Affiliations

Authors

Contributions

LK, PY, and CZ conceived and designed the project. PY, JZ, and YH performed the experiments and conducted the data analysis. PY and CZ wrote the paper. XZ and LY helped with experiments. CZ, HZ, XZ, and YX revised the manuscript.

Corresponding authors

Correspondence to Chao Zhang or Ling-Yi Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Zhu, X., Zhu, JL. et al. The Chk2-PKM2 axis promotes metabolic control of vasculogenic mimicry formation in p53-mutated triple-negative breast cancer. Oncogene 40, 5262–5274 (2021). https://doi.org/10.1038/s41388-021-01933-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01933-z

This article is cited by

Search

Quick links