Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOSTDC1 promotes invasion and liver metastasis in colorectal cancer via interaction with ALCAM/CD166

Abstract

The mechanistic basis of liver metastasis in colorectal cancer remains poorly understood. We previously reported that the sclerostin domain containing-1 (SOSTDC1) protein is overexpressed in the secretome of metastatic colorectal cancer cells and can inhibit liver homing. Here, we investigated the mechanisms of SOSTDC1 for promoting invasiveness and progression of colorectal cancer liver metastasis. SOSTDC1 inhibition of BMP4 maintains the expression of cancer stem cell traits, including SOX2 and NANOG. Immunoprecipitation and mass spectrometry analyses reveal the association of SOSTDC1 with ALCAM/CD166, which was confirmed by confocal microscopy and competition ELISA. Interaction with ALCAM is mediated by the N-terminal region of SOSTDC1, which contains a sequence similar to the ALCAM-binding motif used by CD6. Knocking down either SOSTDC1 or ALCAM expression, or using blocking antibodies, reduces the invasive activity by inhibiting Src and PI3K/AKT signaling pathways. In addition, ALCAM interacts with the α2ß1 and α1ß1 integrins, providing a possible link to Src activation. Finally, inoculation of SOSTDC1-silenced metastatic cells increases mouse survival by inhibiting liver metastasis. In conclusion, SOSTDC1 promotes invasion and liver metastasis in colorectal cancer, by overcoming BMP4-specific antimetastatic signals and inducing ALCAM-mediated Src and PI3K/AKT activation. These experiments underscore the potential of SOSTDC1 as a therapeutic target in metastatic colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SOSTDC1 is overexpressed in colorectal cancer metastasis.
Fig. 2: SOSTDC1 promotes cell invasion and activation of signaling pathways.
Fig. 3: SOSTDC1 inhibits BMP4 to maintain expression of stem cell transcription factors.
Fig. 4: SOSTDC1 interacts with ALCAM using a CD6-like motif.
Fig. 5: Truncation of SOSTDC1 N-terminus inhibits ALCAM-mediated migration and invasion.
Fig. 6: ALCAM regulates cell invasion and actin polymerization in a coordinated way with SOSTDC1.
Fig. 7: SOSTDC1/ALCAM expression correlates with liver metastasis. A functional model.

Similar content being viewed by others

References

  1. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  3. Oskarsson T, Batlle E, Massague J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 2014;14:306–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morikawa K, Walker SM, Jessup JM, Fidler IJ. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res. 1988;48:1943–8.

    CAS  PubMed  Google Scholar 

  5. Bartolome RA, Barderas R, Torres S, Fernandez-Acenero MJ, Mendes M, Garcia-Foncillas J, et al. Cadherin-17 interacts with alpha2beta1 integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis. Oncogene. 2014;33:1658–69.

    Article  CAS  PubMed  Google Scholar 

  6. Kim GR, Ha GH, Bae JH, Oh SO, Kim SH, Kang CD. Metastatic colon cancer cell populations contain more cancer stem-like cells with a higher susceptibility to natural killer cell-mediated lysis compared with primary colon cancer cells. Oncol Lett. 2015;9:1641–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barderas R, Mendes M, Torres S, Bartolome RA, Lopez-Lucendo M, Villar-Vazquez R, et al. In-depth characterization of the secretome of colorectal cancer metastatic cells identifies key proteins in cell adhesion, migration, and invasion. Mol Cell Proteom. 2013;12:1602–20.

    Article  CAS  Google Scholar 

  8. Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, Takahashi S, et al. USAG-1: a bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochem Biophys Res Commun. 2004;316:490–500.

    Article  CAS  PubMed  Google Scholar 

  9. Nolan K, Thompson TB. The DAN family: modulators of TGF-beta signaling and beyond. Protein Sci. 2014;23:999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yanagita M. BMP antagonists: their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev. 2005;16:309–17.

    Article  CAS  PubMed  Google Scholar 

  11. Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem. 2009;284:23159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blish KR, Wang W, Willingham MC, Du W, Birse CE, Krishnan SR, et al. A human bone morphogenetic protein antagonist is down-regulated in renal cancer. Mol Biol Cell. 2008;19:457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clausen KA, Blish KR, Birse CE, Triplette MA, Kute TE, Russell GB, et al. SOSTDC1 differentially modulates Smad and beta-catenin activation and is down-regulated in breast cancer. Breast Cancer Res Treat. 2011;129:737–46.

    Article  CAS  PubMed  Google Scholar 

  14. Tesfay L, Clausen KA, Kim JW, Hegde P, Wang X, Miller LD, et al. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 2015;75:2254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu L, Wu S, Yang Y, Cai J, Zhu X, Wu J, et al. SOSTDC1 is down-regulated in non-small cell lung cancer and contributes to cancer cell proliferation. Cell Biosci. 2016;6:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen G, Gong H, Wang T, Wang J, Han Z, Bai G, et al. SOSTDC1 inhibits bone metastasis in non-small cell lung cancer and may serve as a clinical therapeutic target. Int J Mol Med. 2018;42:3424–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cui Y, Zhang F, Jia Y, Sun L, Chen M, Wu S, et al. The BMP antagonist, SOSTDC1, restrains gastric cancer progression via inactivation of c-Jun signaling. Am J Cancer Res. 2019;9:2331–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150:764–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Tritschler I, et al. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev. 2014;28:1085–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22:571–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Lersner A, Droesen L, Zijlstra A. Modulation of cell adhesion and migration through regulation of the immunoglobulin superfamily member ALCAM/CD166. Clin Exp Metastasis. 2019;36:87–95.

    Article  CAS  Google Scholar 

  22. Chappell PE, Garner LI, Yan J, Metcalfe C, Hatherley D, Johnson S, et al. Structures of CD6 and its ligand CD166 give insight into their interaction. Structure. 2015;23:1426–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta. 2007;1773:642–52.

    Article  CAS  PubMed  Google Scholar 

  24. Lunter PC, van Kilsdonk JW, van Beek H, Cornelissen IM, Bergers M, Willems PH, et al. Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. Cancer Res. 2005;65:8801–8.

    Article  CAS  PubMed  Google Scholar 

  25. van Kilsdonk JW, Wilting RH, Bergers M, van Muijen GN, Schalkwijk J, van Kempen LC, et al. Attenuation of melanoma invasion by a secreted variant of activated leukocyte cell adhesion molecule. Cancer Res. 2008;68:3671–9.

    Article  PubMed  CAS  Google Scholar 

  26. Rawat A, Gopisetty G, Thangarajan R. E4BP4 is a repressor of epigenetically regulated SOSTDC1 expression in breast cancer cells. Cell Oncol. 2014;37:409–19.

    Article  CAS  Google Scholar 

  27. Gopal G, Raja UM, Shirley S, Rajalekshmi KR, Rajkumar T. SOSTDC1 down-regulation of expression involves CpG methylation and is a potential prognostic marker in gastric cancer. Cancer Genet. 2013;206:174–82.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Q, Chen J, Feng J, Xu Y, Zheng W, Wang J. SOSTDC1 inhibits follicular thyroid cancer cell proliferation, migration, and EMT via suppressing PI3K/Akt and MAPK/Erk signaling pathways. Mol Cell Biochem. 2017;435:87–95.

    Article  CAS  PubMed  Google Scholar 

  29. Secondini C, Wetterwald A, Schwaninger R, Thalmann GN, Cecchini MG. The role of the BMP signaling antagonist noggin in the development of prostate cancer osteolytic bone metastasis. PLoS ONE. 2011;6:e16078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Young RA. Control of the embryonic stem cell state. Cell. 2011;144:940–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104:10158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horst D, Kriegl L, Engel J, Kirchner T, Jung A. Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Investig. 2009;27:844–50.

    Article  Google Scholar 

  34. Weichert W, Knosel T, Bellach J, Dietel M, Kristiansen G. ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. J Clin Pathol. 2004;57:1160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Donizy P, Zietek M, Halon A, Leskiewicz M, Kozyra C, Matkowski R. Prognostic significance of ALCAM (CD166/MEMD) expression in cutaneous melanoma patients. Diagn Pathol. 2015;10:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kahlert C, Weber H, Mogler C, Bergmann F, Schirmacher P, Kenngott HG, et al. Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br J Cancer. 2009;101:457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Inaguma S, Lasota J, Wang Z, Czapiewski P, Langfort R, Rys J, et al. Expression of ALCAM (CD166) and PD-L1 (CD274) independently predicts shorter survival in malignant pleural mesothelioma. Hum Pathol. 2018;71:1–7.

    Article  CAS  PubMed  Google Scholar 

  38. Tudor C, te Riet J, Eich C, Harkes R, Smisdom N, Bouhuijzen Wenger J, et al. Syntenin-1 and ezrin proteins link activated leukocyte cell adhesion molecule to the actin cytoskeleton. J Biol Chem. 2014;289:13445–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gilsanz A, Sanchez-Martin L, Gutierrez-Lopez MD, Ovalle S, Machado-Pineda Y, Reyes R, et al. ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9. Cell Mol Life Sci. 2013;70:475–93.

    Article  CAS  PubMed  Google Scholar 

  40. Rauhala HE, Teppo S, Niemela S, Kallioniemi A. Silencing of the ARP2/3 complex disturbs pancreatic cancer cell migration. Anticancer Res. 2013;33:45–52.

    CAS  PubMed  Google Scholar 

  41. Kholmanskikh SS, Dobrin JS, Wynshaw-Boris A, Letourneau PC, Ross ME. Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J Neurosci. 2003;23:8673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lo FY, Chen HT, Cheng HC, Hsu HS, Wang YC. Overexpression of PAFAH1B1 is associated with tumor metastasis and poor survival in non-small cell lung cancer. Lung Cancer. 2012;77:585–92.

    Article  PubMed  Google Scholar 

  43. Weidle UH, Eggle D, Klostermann S, Swart GW. ALCAM/CD166: cancer-related issues. Cancer Genom Proteom. 2010;7:231–43.

    CAS  Google Scholar 

  44. Devis L, Moiola CP, Masia N, Martinez-Garcia E, Santacana M, Stirbat TV, et al. Activated leukocyte cell adhesion molecule (ALCAM) is a marker of recurrence and promotes cell migration, invasion, and metastasis in early-stage endometrioid endometrial cancer. J Pathol. 2017;241:475–87.

    Article  CAS  PubMed  Google Scholar 

  45. Piazza T, Cha E, Bongarzone I, Canevari S, Bolognesi A, Polito L, et al. Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. J Cell Sci. 2005;118:1515–25.

    Article  CAS  PubMed  Google Scholar 

  46. Torres S, Garcia-Palmero I, Herrera M, Bartolome RA, Pena C, Fernandez-Acenero MJ, et al. LOXL2 is highly expressed in cancer-associated fibroblasts and associates to poor colon cancer survival. Clin Cancer Res. 2015;21:4892–902.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Diego Laxalde, Alejandro Diaz, José Ramón Gutiérrez, Marcos Rodriguez, Eva Calviño, and Gema Elvira for their contributions to the paper. This research was supported by grants from the Ministerio de Ciencia e Innovación (BIO2015-66489-R, RTI2018-095055-B100), Foundation Ramón Areces and PRB3 (ISCIII-SGEFI/FEDER-PT17/0019/0008).

Author information

Authors and Affiliations

Authors

Contributions

JIC and RAB designed the study, RAB, LP, MJ, VR, and JII carried out the experiments, RAB and JIC analyzed the data, JII provided reagents and protocols and RAB and JIC wrote the paper.

Corresponding authors

Correspondence to Rubén A. Bartolomé or J. Ignacio Casal.

Ethics declarations

Conflict of interest

JIC has stock ownership of Protein Alternatives SL. JII is employee of Protein Alternatives SL. All other authors have no conflict of interest to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolomé, R.A., Pintado-Berninches, L., Jaén, M. et al. SOSTDC1 promotes invasion and liver metastasis in colorectal cancer via interaction with ALCAM/CD166. Oncogene 39, 6085–6098 (2020). https://doi.org/10.1038/s41388-020-01419-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01419-4

This article is cited by

Search

Quick links