Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

JMJD6 regulates histone H2A.X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity

Abstract

Overexpression of Jumonji domain-containing 6 (JMJD6) has been reported to be associated with more aggressive breast cancer characteristics. However, the precise role of JMJD6 in breast cancer development remains unclear. Here, we demonstrate that JMJD6 has intrinsic tyrosine kinase activity and can utilize ATP and GTP as phosphate donors to phosphorylate Y39 of histone H2A.X (H2A.XY39ph). High JMJD6 levels promoted autophagy in triple negative breast cancer (TNBC) cells by regulating the expression of autophagy-related genes. The JMJD6-H2A.XY39ph axis promoted TNBC cell growth via the autophagy pathway. We show that combined inhibition of JMJD6 kinase activity and autophagy efficiently decreases TNBC growth. Together, these findings suggest an effective strategy for TNBC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Values for significantly differentially expressed genes are provided in Supplementary Table 2. Chip-sequence analyses are presented in Supplementary Tables 3. The raw data have been deposited in the ArrayExpress database at EMBL-EBI (http://www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-6517 and E-MTAB-6539. All other data and reagents are available from the corresponding author upon reasonable request.

References

  1. Chang B, Chen Y, Zhao Y, Bruick RK. JMJD6 is a histone arginine demethylase. Science. 2007;318:444–7.

    Article  CAS  Google Scholar 

  2. Webby CJ, Wolf A, Gromak N, Dreger M, Kramer H, Kessler B, et al. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science. 2009;325:90–93.

    Article  CAS  Google Scholar 

  3. Wang F, He L, Huangyang P, Liang J, Si W, Yan R, et al. JMJD6 promotes colon carcinogenesis through negative regulation of p53 by hydroxylation. PLoS Biol. 2014;12:e1001819.

    Article  Google Scholar 

  4. Poulard C, Rambaud J, Lavergne E, Jacquemetton J, Renoir JM, Tredan O, et al. Role of JMJD6 in breast tumourigenesis. PLoS ONE. 2015;10:e126181.

    Article  Google Scholar 

  5. Aprelikova O, Chen K, El TL, Brignatz-Guittard C, Han J, Qiu T, et al. The epigenetic modifier JMJD6 is amplified in mammary tumors and cooperates with c-Myc to enhance cellular transformation, tumor progression, and metastasis. Clin Epigenetics. 2016;8:38.

    Article  Google Scholar 

  6. Lee YF, Miller LD, Chan XB, Black MA, Pang B, Ong CW, et al. JMJD6 is a driver of cellular proliferation and motility and a marker of poor prognosis in breast cancer. Breast Cancer Res. 2012;14:R85.

    Article  CAS  Google Scholar 

  7. Miller TE, Liau BB, Wallace LC, Morton AR, Xie Q, Dixit D, et al. Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature. 2017;547:355–9.

    Article  CAS  Google Scholar 

  8. Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413–7.

    Article  CAS  Google Scholar 

  9. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–67.

    Article  CAS  Google Scholar 

  10. Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S, et al. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. 2012;30:1879–87.

    Article  CAS  Google Scholar 

  11. Liu Y, Long Y, Wang S, Li Y, Zhang J. Phosphorylation of H2A.XTyr39 positively regulates DNA damage response and is linked to cancer progression. FEBS J. 2016;24:4462–73.

    Article  Google Scholar 

  12. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163–71.

    Article  CAS  Google Scholar 

  13. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature. 2009;458:591–6.

    Article  CAS  Google Scholar 

  14. Quack I, Rump LC, Gerke P, Walther I, Vinke T, Vonend O, et al. beta-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc Natl Acad Sci USA. 2006;103:14110–5.

    Article  CAS  Google Scholar 

  15. Cikala M, Alexandrova O, David CN, Proschel M, Stiening B, Cramer P, et al. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity. BMC Cell Biol. 2004;5:26.

    Article  Google Scholar 

  16. Hahn P, Bose J, Edler S, Lengeling A. Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins. BMC Genom. 2008;9:293.

    Article  Google Scholar 

  17. Wolf A, Mantri M, Heim A, Muller U, Fichter E, Mackeen MM, et al. The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization. Biochem J. 2013;453:357–70.

    Article  CAS  Google Scholar 

  18. Rubin CS, Rosen OM. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–87.

    Article  CAS  Google Scholar 

  19. Hathaway GM, Traugh JA. Casein kinase II. Methods Enzymol. 1983;99:317–31.

    Article  CAS  Google Scholar 

  20. Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.

    Article  CAS  Google Scholar 

  21. Wu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M, et al. Histone variant H2A.X deposition pattern serves as a functional epigenetic mark for distinguishing the developmental potentials of iPSCs. Cell Stem Cell. 2014;15:281–94.

    Article  CAS  Google Scholar 

  22. Liu X, Shu S, Hong MS, Yu B, Korn ED. Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft. J Biol Chem. 2010;285:9729–39.

    Article  CAS  Google Scholar 

  23. Lefort S, Joffre C, Kieffer Y, Givel AM, Bourachot B, Zago G, et al. Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy. 2014;10:2122–42.

    Article  CAS  Google Scholar 

  24. Thomas S, Sharma N, Golden EB, Cho H, Agarwal P, Gaffney KJ, et al. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors. Cancer Lett. 2012;325:63–71.

    Article  CAS  Google Scholar 

  25. Chittaranjan S, Bortnik S, Dragowska WH, Xu J, Abeysundara N, Leung A, et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res. 2014;20:3159–73.

    Article  CAS  Google Scholar 

  26. Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL, Chang JC. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett. 2016;376:249–58.

    Article  CAS  Google Scholar 

  27. Rao R, Balusu R, Fiskus W, Mudunuru U, Venkannagari S, Chauhan L, et al. Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol Cancer Ther. 2012;11:973–83.

    Article  CAS  Google Scholar 

  28. Vangimalla SS, Ganesan M, Kharbanda KK, Osna NA. Bifunctional enzyme JMJD6 contributes to multiple disease pathogenesis: new twist on the old story. Biomolecules. 2017;7:E41.

    Article  Google Scholar 

  29. Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget. 2016;7:67532–50.

    Article  Google Scholar 

  30. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 2009;457:57–62.

    Article  CAS  Google Scholar 

  31. Dragowska WH, Weppler SA, Wang JC, Wong LY, Kapanen AI, Rawji JS, et al. Induction of autophagy is an early response to gefitinib and a potential therapeutic target in breast cancer. PLoS One. 2013;8:e76503.

    Article  CAS  Google Scholar 

  32. Kung HJ. Targeting tyrosine kinases and autophagy in prostate cancer. Horm Cancer. 2011;2:38–46.

    Article  CAS  Google Scholar 

  33. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119:1109–23.

    Article  CAS  Google Scholar 

  34. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol. 2001;3:245–52.

    Article  CAS  Google Scholar 

  35. Pattingre S, Petiot A, Codogno P. Analyses of Galpha-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods Enzymol. 2004;390:17–31.

    Article  CAS  Google Scholar 

  36. Allen NP, Huang L, Burlingame A, Rexach M. Proteomic analysis of nucleoporin interacting proteins. J Biol Chem. 2001;276:29268–74.

    Article  CAS  Google Scholar 

  37. Mendez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol. 2000;20:8602–12.

    Article  CAS  Google Scholar 

  38. Bellard M, Dretzen G, Giangrande A, Ramain P. Nuclease digestion of transcriptionally active chromatin. Methods Enzymol. 1989;170:317–46.

    Article  CAS  Google Scholar 

  39. Mohammed H, Russell IA, Stark R, Rueda OM, Hickey TE, Tarulli GA, et al. Progesterone receptor modulates ERalpha action in breast cancer. Nature. 2015;523:313–7.

    Article  CAS  Google Scholar 

  40. Liu Y, Wang DL, Chen S, Zhao L, Sun FL. Oncogene Ras/phosphatidylinositol 3-kinase signaling targets histone H3 acetylation at lysine 56. J Biol Chem. 2012;287:41469–80.

    Article  CAS  Google Scholar 

  41. Rio DC. Expression and purification of active recombinant T7 RNA polymerase from E. coli. Cold Spring Harb Protoc. 2013;2013:t78527.

    Article  Google Scholar 

  42. Druzinec D, Salzig D, Brix A, Kraume M, Vilcinskas A, Kollewe C, et al. Optimization of insect cell based protein production processes—online monitoring, expression systems, scale up. Adv Biochem Eng Biotechnol. 2013;136:65–100.

    CAS  PubMed  Google Scholar 

  43. Tsai A, Carstens RP. An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc. 2006;1:2820–7.

    Article  CAS  Google Scholar 

  44. Luger K, Rechsteiner TJ, Richmond TJ. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 1999;304:3–19.

    Article  CAS  Google Scholar 

  45. Steger DJ, Eberharter A, John S, Grant PA, Workman JL. Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc Natl Acad Sci USA. 1998;95:12924–9.

    Article  CAS  Google Scholar 

  46. Lowary PT, Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol. 1998;276:19–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Natural Science Foundation of China (grant numbers 81772834, 81302324, 81301779). Other support include: Science Fund for Distinguished Young Scholars of North China University of Science and Technology (JQ201704); Doctoral Research Project of North China University of Science and Technology. This work was also supported by the Scientific Research Matching Funds of North China University of Science and Technology and scientific research funds of Tangshan People’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Qing Wang, Jing-Hua Zhang or Xiao-Jun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Long, YH., Wang, SQ. et al. JMJD6 regulates histone H2A.X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity. Oncogene 38, 980–997 (2019). https://doi.org/10.1038/s41388-018-0466-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0466-y

This article is cited by

Search

Quick links