Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma

Abstract

The tumor microenvironment promotes epigenetic changes in tumor cells associated with tumor aggressiveness. Here we report that in primary tumor cells, increased interleukin-6 (IL-6) expression brought on by DNA demethylation of its promoter by ten-eleven translocation 2 (TET2) promotes lung metastasis in osteosarcoma (OS). Xenograft experiments show increased IL-6 expression and decreased methylation of its promoter in OS cells after implantation relative to before implantation. In addition, changes in IL-6 methylation and expression seen in OS cells at the primary site were maintained at the metastatic site. TET2 knockdown in OS cells suppressed upregulation of IL-6 and demethylation of its promoter in xenograft tumors and decreased tumor metastasis. We also present evidence showing that tumor cell-derived IL-6 facilitates glycolytic metabolism in tumor cells by activating the MEK/ERK1/2/hypoxia-inducible transcription factor-1α (HIF-1α) pathway and increases lung colonization by OS cells by upregulating expression of intercellular adhesion molecule-1 (ICAM-1), enhancing tumor metastasis. Blocking IL-6 signaling with a humanized monoclonal antibody against the IL-6 receptor reduced lung metastasis and prolonged survival of xenografted mice. These findings suggest that TET2-dependent IL-6 induction enables acquisition of aggressive phenotypes in OS cells via the tumor microenvironment and that blocking IL-6 signaling could be serve as a potential therapy to antagonize metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    Article  CAS  PubMed  Google Scholar 

  3. Flint TR, Fearon DT, Janowitz T. Connecting the metabolic and immune responses to cancer. Trends Mol Med. 2017;23:451–64.

    Article  CAS  PubMed  Google Scholar 

  4. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eason K, Sadanandam A. Molecular or metabolic reprograming: what triggers tumor subtypes? Cancer Res. 2016;76:5195–200.

    Article  CAS  PubMed  Google Scholar 

  6. Qiu GZ, Jin MZ, Dai JX, Sun W, Feng JH, Jin WL. Reprogramming of the tumor in the hypoxic niche: the emerging concept and association therapeutic strategies. Trends Pharmacol Sci. 2017;38:669–86.

    Article  CAS  PubMed  Google Scholar 

  7. Rokavec M, Oner MG, Hermeking H. lnflammation-induced epigenetic switches in cancer. Cell Mol Life Sci. 2016;73:23–39.

    Article  CAS  PubMed  Google Scholar 

  8. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  9. Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156:45–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2011;13:7–13.

    Article  CAS  PubMed  Google Scholar 

  11. Williams K, Christensen J, Helin K. DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep. 2011;13:28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  13. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.

    Article  CAS  PubMed  Google Scholar 

  14. Mauer J, Denson JL, Bruning JC. Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 2015;36:92–101.

    Article  CAS  PubMed  Google Scholar 

  15. Bharti R, Dey G, Mandal M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: a snapshot of IL-6 mediated involvement. Cancer Lett. 2016;375:51–61.

    Article  CAS  PubMed  Google Scholar 

  16. Borsig L, Wolf MJ, Roblek M, Lorentzen A, Heikenwalder M. Inflammatory chemokines and metastasis--tracing the accessory. Oncogene. 2014;33:3217–24.

    Article  CAS  PubMed  Google Scholar 

  17. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14:6735–41.

    Article  CAS  PubMed  Google Scholar 

  18. Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, et al. Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci. 2015;72:3097–113.

    Article  CAS  PubMed  Google Scholar 

  19. Cortini M, Avnet S, Baldini N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 2017;405:90–9.

    Article  CAS  PubMed  Google Scholar 

  20. Avnet S, Di Pompo G, Chano T, Errani C, Ibrahim-Hashim A, Gillies RJ, et al. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-kB activation. Int J Cancer. 2017;140:1331–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han XG, Du L, Qiao H, Tu B, Wang YG, Qin A, et al. CXCR1 knockdown improves the sensitivity of osteosarcoma to cisplatin. Cancer Lett. 2015;369:405–15.

    Article  CAS  PubMed  Google Scholar 

  22. Ohba T, Cole HA, Cates JM, Slosky DA, Haro H, Ando T, et al. Bisphosphonates inhibit osteosarcoma-mediated osteolysis via attenuation of tumor expression of MCP-1 and RANKL. J Bone Miner Res. 2014;29:1431–45.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Q, Sun W, Lioao Y, Zeng H, Shan L, Yin F, et al. Monocyte chemotactic protein-1 promotes the proliferation and invasion of osteosarcoma cells and upregulates the expression of AKT. Mol Med Rep. 2015;12:219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab. 2014;25:245–54.

    Article  CAS  PubMed  Google Scholar 

  25. Odagiri H, Kadomatsu T, Endo M, Masuda T, Morioka MS, Fukuhara S, et al. The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin a5b1, p38 MAPK, and matrix metalloproteinases. Sci Signal. 2014;7:ra7.

    Article  CAS  PubMed  Google Scholar 

  26. Ohba T, Cates JM, Cole HA, Slosky DA, Haro H, Ando T, et al. Autocrine VEGF/VEGFR1 signaling in a subpopulation of cells associates with aggressive osteosarcoma. Mol Cancer Res. 2014;12:1100–11.

    Article  CAS  PubMed  Google Scholar 

  27. Meyer FR, Steinborn R, Grausgruber H, Wolfesberger B, Walter I. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma. Vet J. 2015;206:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-b signaling in bone remodeling and osteosarcoma progression. J Clin Med. 2016;5:96.

    Article  CAS  PubMed Central  Google Scholar 

  29. Nile CJ, Read RC, Akil M, Duff GW, Wilson AG. Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum. 2008;58:2686–93.

    Article  PubMed  Google Scholar 

  30. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–7.

    Article  CAS  PubMed  Google Scholar 

  31. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  32. Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007;12:108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.

    Article  CAS  PubMed  Google Scholar 

  34. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

    Article  CAS  PubMed  Google Scholar 

  35. Mylonis I, Kourti M, Samiotaki M, Panayotou G, Simos G. Mortalin-mediated and ERK-controlled targeting of HIF-1a to mitochondria confers resistance to apoptosis under hypoxia. J Cell Sci. 2017;130:466–79.

    Article  CAS  PubMed  Google Scholar 

  36. He X, Wang J, Wei W, Shi M, Xin B, Zhang T, et al. Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1a and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol Ther. 2016;17:188–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soga T. Cancer metabolism: key players in metabolic reprogramming. Cancer Sci. 2013;104:275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuijjer ML, Rydbeck H, Kresse SH, Buddingh EP, Lid AB, Roelofs H, et al. Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes Chromosomes Cancer. 2012;51:696–706.

    Article  CAS  PubMed  Google Scholar 

  39. Reimann E, Koks S, Ho XD, Maasalu K, Martson A. Whole exome sequencing of a single osteosarcoma case—integrative analysis with whole transcriptome RNA-seq data. Hum Genomics. 2014;8:20.

    PubMed  PubMed Central  Google Scholar 

  40. Smida J, Xu H, Zhang Y, Baumhoer D, Ribi S, Kovac M, et al. Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma. Int J Cancer. 2017;141:816–28.

    Article  CAS  PubMed  Google Scholar 

  41. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13:480–91.

    Article  CAS  PubMed  Google Scholar 

  42. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang H, Liu Y, Bai F, Zhang YJ, Ma SH, Liu J, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013;32:663–9.

    Article  CAS  PubMed  Google Scholar 

  44. Deng M, Zhang R, He Z, Qiu Q, Lu X, Yin J, et al. TET-mediated sequestration of miR-26 drives EZH2 expression and gastric carcinogenesis. Cancer Res. 2017;77:6069–82.

    Article  CAS  PubMed  Google Scholar 

  45. Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFa-p38-MAPK signaling axis. Cancer Res. 2015;75:3912–24.

    Article  CAS  PubMed  Google Scholar 

  46. Mariani CJ, Vasanthakumar A, Madzo J, Yesilkanal A, Bhagat T, Yu Y, et al. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep. 2014;7:1343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson C, Qiu L, Hong Y, Karnik T, Tadros G, Mau B, et al. The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer. Oncogene. 2017;36:2565–76.

    Article  CAS  PubMed  Google Scholar 

  48. Ueda J, Ho JC, Lee KL, Kitajima S, Yang H, Sun W, et al. The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth. Mol Cell Biol. 2014;34:3702–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo X, Shi M, Sun L, Wang Y, Gui Y, Cai Z, et al. The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma. 2011;58:153–7.

    Article  CAS  PubMed  Google Scholar 

  50. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48:491–507.

    Article  CAS  PubMed  Google Scholar 

  51. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153:38–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sechler M, Parrish JK, Birks DK, Jedlicka P. The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis. Oncogene. 2017;36:4150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Agger K, Miyagi S, Pedersen MT, Kooistra SM, Johansen JV, Helin K. Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells. Genes Dev. 2016;30:1278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y, et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene. 2016;35:2441–52.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao L, Li W, Zang W, Liu Z, Xu X, Yu H, et al. JMJD2B promotes epithelial-mesenchymal transition by cooperating with b-catenin and enhances gastric cancer metastasis. Clin Cancer Res. 2013;19:6419–29.

    Article  CAS  PubMed  Google Scholar 

  56. Lin YM, Chang ZL, Liao YY, Chou MC, Tang CH. IL-6 promotes ICAM-1 expression and cell motility in human osteosarcoma. Cancer Lett. 2012;328:135–43.

    Article  CAS  PubMed  Google Scholar 

  57. Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev. 2005;208:126–40.

    Article  CAS  PubMed  Google Scholar 

  58. Demaria M, Misale S, Giorgi C, Miano V, Camporeale A, Campisi J, et al. STAT3 can serve as a hit in the process of malignant transformation of primary cells. Cell Death Differ. 2012;19:1390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15:669–82.

    Article  CAS  PubMed  Google Scholar 

  60. Baglio SR, Lagerweij T, Perez-Lanzon M, Ho XD, Leveille N, Melo SA, et al. Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res. 2017;23:3721–33.

    Article  CAS  PubMed  Google Scholar 

  61. Bian ZY, Fan QM, Li G, Xu WT, Tang TT. Human mesenchymal stem cells promote growth of osteosarcoma: involvement of interleukin-6 in the interaction between human mesenchymal stem cells and Saos-2. Cancer Sci. 2010;101:2554–60.

    Article  CAS  PubMed  Google Scholar 

  62. Tu B, Du L, Fan QM, Tang Z, Tang TT. STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett. 2012;325:80–8.

    Article  CAS  PubMed  Google Scholar 

  63. Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, et al. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 2013;15:848–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han J, Xi Q, Meng Q, Liu J, Zhang Y, Han Y, et al. Interleukin-6 promotes tumor progression in colitis-associated colorectal cancer through HIF-1a regulation. Oncol Lett. 2016;12:4665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goumas FA, Holmer R, Egberts JH, Gontarewicz A, Heneweer C, Geisen U, et al. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int J Cancer. 2015;137:1035–46.

    Article  CAS  PubMed  Google Scholar 

  66. Isobe A, Sawada K, Kinose Y, Ohyagi-Hara C, Nakatsuka E, Makino H, et al. Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS ONE. 2015;10:e0118080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336:934–7.

    Article  CAS  PubMed  Google Scholar 

  68. Kadomatsu T, Uragami S, Akashi M, Tsuchiya Y, Nakajima H, Nakashima Y, et al. A molecular clock regulates angiopoietin-like protein 2 expression. PLoS ONE. 2013;8:e57921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okada S, Harada H, Ito T, Saito T, Suzu S. Early development of human hematopoietic and acquired immune systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted with cord blood-derived CD34+ cells. Int J Hematol. 2008;88:476–82.

    Article  PubMed  Google Scholar 

  70. Shimizu T, Ishikawa T, Sugihara E, Kuninaka S, Miyamoto T, Mabuchi Y, et al. c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene. 2010;29:5687–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for valuable suggestions and discussion. We also thank K. Tabu, N. Shirai, S. Iwaki, Y. Shogenji, and M. Kamada for technical assistance. This work was supported by the Scientific Research Fund of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (grant 26116722 to YO, grant 15K06836 to TK, grant 17K08663 to ME), and by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST) (grant 13417915 to YO) and by the CREST program of the Japan Agency for Medical Research and Development (AMED) (grant 17gm0610007h0005 to YO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsuyoshi Kadomatsu or Yuichi Oike.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, H., Kadomatsu, T., Tanoue, H. et al. TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene 37, 2903–2920 (2018). https://doi.org/10.1038/s41388-018-0160-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0160-0

This article is cited by

Search

Quick links