Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia

Abstract

Increases in broadband cortical electroencephalogram (EEG) power in the gamma band (30–80 Hz) range have been observed in schizophrenia patients and in mouse models of schizophrenia. They are also seen in humans and animals treated with the psychotomimetic agent ketamine. However, the mechanisms which can result in increased broadband gamma power and the pathophysiological implications for cognition and behavior are poorly understood. Here we report that tonic optogenetic manipulation of an ascending arousal system bidirectionally tunes cortical broadband gamma power, allowing on-demand tests of the effect on cortical processing and behavior. Constant, low wattage optogenetic stimulation of basal forebrain (BF) neurons containing the calcium-binding protein parvalbumin (PV) increased broadband gamma frequency power, increased locomotor activity, and impaired novel object recognition. Concomitantly, task-associated gamma band oscillations induced by trains of auditory stimuli, or exposure to novel objects, were impaired, reminiscent of findings in schizophrenia patients. Conversely, tonic optogenetic inhibition of BF-PV neurons partially rescued the elevated broadband gamma power elicited by subanesthetic doses of ketamine. These results support the idea that increased cortical broadband gamma activity leads to impairments in cognition and behavior, and identify BF-PV activity as a modulator of this activity. As such, BF-PV neurons may represent a novel target for pharmacotherapy in disorders such as schizophrenia which involve aberrant increases in cortical broadband gamma activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tonic optical stimulation of basal forebrain (BF) parvalbumin (PV) neurons increases broadband cortical gamma band (30–80 Hz) activity, a measure of cortical excitatory-inhibitory (E/I) balance.
Fig. 2: Elevation of broadband gamma activity by tonic optical stimulation of BF-PV neurons impairs the 40 Hz auditory steady-state response (ASSR).
Fig. 3: Tonic optical stimulation of BF-PV neurons increases open-field locomotor activity.
Fig. 4: Elevation of broadband gamma activity by tonic optical stimulation of BF-PV neurons impairs working memory in the NOR task and object investigation induced gamma band activity.
Fig. 5: Optogenetic inhibition of BF-PV neurons partially rescues the elevation in broadband gamma activity caused by the psychotomimetic drug, ketamine.

Similar content being viewed by others

References

  1. Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, et al. Searching for cross-diagnostic convergence: neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders. Biol Psychiatry 2017;81:848–61.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grossberg S. The imbalanced brain: from normal behavior to schizophrenia. Biol Psychiatry 2000;48:81–98.

    Article  CAS  PubMed  Google Scholar 

  4. Krystal JH, Anticevic A, Yang GJ, Dragoi G, Driesen NR, Wang X-J, et al. Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: a translational and computational neuroscience perspective. Biol Psychiatry 2017;81:874–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011;477:171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buzsáki G, Wang X-J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage 2017;158:70–78.

    Article  PubMed  Google Scholar 

  8. Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 1999;96:15222–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grent-’t-Jong T, Gross J, Goense J, Wibral M, Gajwani R, Gumley AI, et al. Resting-state gamma-band power alterations in schizophrenia reveal E/I-balance abnormalities across illness-stages. Elife. 2018;7:e37799.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Baradits M, Kakuszi B, Bálint S, Fullajtár M, Mód L, Bitter I, et al. Alterations in resting-state gamma activity in patients with schizophrenia: a high-density EEG study. Eur Arch Psychiatry Clin Neurosci. 2019;269:429–37.

    Article  PubMed  Google Scholar 

  11. Hirano Y, Oribe N, Kanba S, Onitsuka T, Nestor PG, Spencer KM. Spontaneous gamma activity in schizophrenia. JAMA Psychiatry. 2015;72:813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Spencer KM. Baseline gamma power during auditory steady-state stimulation in schizophrenia. Front Hum Neurosci. 2011;5:190.

    PubMed  Google Scholar 

  13. Pinault D. N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry 2008;63:730–5.

    Article  CAS  PubMed  Google Scholar 

  14. McNally JM, McCarley RW, McKenna JT, Yanagawa Y, Brown RE. Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience 2011;199:51–63.

    Article  CAS  PubMed  Google Scholar 

  15. Kocsis B. Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations. Biol Psychiatry 2012;71:987–95.

    Article  CAS  PubMed  Google Scholar 

  16. Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, et al. Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical-subcortical networks in humans: evidence from resting-state magnetoencephalography-recordings. Schizophr Bull 2015;41:1105–14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muthukumaraswamy SD, Shaw AD, Jackson LE, Hall J, Moran R, Saxena N. Evidence that subanesthetic doses of ketamine cause sustained disruptions of NMDA and AMPA-mediated frontoparietal connectivity in humans. J Neurosci. 2015;35:11694–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grent-’t-Jong T, Rivolta D, Gross J, Gajwani R, Lawrie SM, Schwannauer M, et al. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia. Brain 2018;141:2511–26.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Homayoun H, Moghaddam B. Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs. Proc Natl Acad Sci USA. 2008;105:18041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, et al. NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci. 1996;16:2034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gandal MJ, Anderson RL, Billingslea EN, Carlson GC, Roberts TPL, Siegel SJ. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia? Genes Brain Behav. 2012;11:740–50.

    Article  CAS  PubMed  Google Scholar 

  22. White RS, Siegel SJ. Cellular and circuit models of increased resting-state network gamma activity in schizophrenia. Neuroscience 2016;321:66–76.

    Article  CAS  PubMed  Google Scholar 

  23. Carlén M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry 2012;17:537–48.

    Article  PubMed  CAS  Google Scholar 

  24. Cape EG, Jones BE. Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J Neurosci. 1998;18:2653–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cape EG, Jones BE. Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur J Neurosci. 2000;12:2166–84.

    Article  CAS  PubMed  Google Scholar 

  26. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci. 1988;8:4007–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaur S, Junek A, Black MA, Semba K. Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats. J Neurosci. 2008;28:491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 2011;519:933–56.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nair J, Klaassen A-L, Poirot J, Vyssotski A, Rasch B, Rainer G. Gamma band directional interactions between basal forebrain and visual cortex during wake and sleep states. J Physiol Paris. 2016;110:19–28.

    Article  PubMed  Google Scholar 

  30. Nair J, Klaassen A-L, Arato J, Vyssotski AL, Harvey M, Rainer G. Basal forebrain contributes to default mode network regulation. Proc Natl Acad Sci USA. 2018;115:1352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang W-C, et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci. 2015;18:1641–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, et al. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun. 2015;6:8744.

    Article  CAS  PubMed  Google Scholar 

  33. Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci USA. 2015;112:3535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal forebrain gating by somatostatin neurons drives prefrontal cortical activity. Cereb Cortex. 2019;29:42–53.

    Article  PubMed  Google Scholar 

  35. McKenna JT, Yang C, Franciosi S, Winston S, Abarr KK, Rigby MS, et al. Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J Comp Neurol. 2013;521:1225–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiol (Bethesda). 2017;32:60–92.

    Google Scholar 

  37. Zhang RV, Featherstone RE, Melynchenko O, Gifford R, Weger R, Liang Y, et al. High-beta/low-gamma frequency activity reflects top-down predictive coding during a spatial working memory test. Exp Brain Res. 2019;237:1881–8.

    Article  PubMed  Google Scholar 

  38. Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kwon JS, O’Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG, et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry. 1999;56:1001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thuné H, Recasens M, Uhlhaas PJ. The 40-Hz auditory steady-state response in patients with schizophrenia: a meta-analysis. JAMA Psychiatry. 2016;73:1145–53.

    Article  PubMed  Google Scholar 

  41. Brenner CA, Krishnan GP, Vohs JL, Ahn W-Y, Hetrick WP, Morzorati SL, et al. Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 2009;35:1065–77.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, et al. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 2006;60:1231–40.

    Article  PubMed  Google Scholar 

  43. Nakao K, Nakazawa K. Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model. Front Neurosci. 2014;8:168.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sivarao DV. The 40-Hz auditory steady-state response: a selective biomarker for cortical NMDA function. Ann N Y Acad Sci. 2015;1344:27–36.

    Article  PubMed  Google Scholar 

  45. Curic S, Leicht G, Thiebes S, Andreou C, Polomac N, Eichler I-C, et al. Reduced auditory evoked gamma-band response and schizophrenia-like clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 2019;44:1239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8:2531–7.

    Article  CAS  PubMed  Google Scholar 

  47. Hakami T, Jones NC, Tolmacheva EA, Gaudias J, Chaumont J, Salzberg M, et al. NMDA receptor hypofunction leads to generalized and persistent aberrant gamma oscillations independent of hyperlocomotion and the state of consciousness. PLoS ONE. 2009;4:e6755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang X-J, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci (Regul Ed). 2012;16:584–92.

    Article  Google Scholar 

  49. Allen P, Sommer IE, Jardri R, Eysenck MW, Hugdahl K. Extrinsic and default mode networks in psychiatric conditions: relationship to excitatory-inhibitory transmitter balance and early trauma. Neurosci Biobehav Rev. 2019;99:90–100.

    Article  PubMed  Google Scholar 

  50. Détári L, Rasmusson DD, Semba K. The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol. 1999;58:249–77.

    Article  PubMed  Google Scholar 

  51. Zaborszky L, Duque A. Sleep-wake mechanisms and basal forebrain circuitry. Front Biosci. 2003;8:d1146–69.

    Article  CAS  PubMed  Google Scholar 

  52. Lin S-C, Brown RE, Hussain Shuler MG, Petersen CCH, Kepecs A. Optogenetic dissection of the basal forebrain neuromodulatory control of cortical activation, plasticity, and cognition. J Neurosci. 2015;35:13896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang C, Thankachan S, McCarley RW, Brown RE. The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr Opin Neurobiol. 2017;44:159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berridge CW, Foote SL. Enhancement of behavioral and electroencephalographic indices of waking following stimulation of noradrenergic beta-receptors within the medial septal region of the basal forebrain. J Neurosci. 1996;16:6999–7009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goard M, Dan Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci. 2009;12:1444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, et al. Thalamic reticular nucleus parvalbumin neurons regulate sleep spindles and electrophysiological aspects of schizophrenia in mice. Sci Rep. 2019;9:3607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Orekhova EV, Stroganova TA, Nygren G, Tsetlin MM, Posikera IN, Gillberg C, et al. Excess of high frequency electroencephalogram oscillations in boys with autism. Biol Psychiatry 2007;62:1022–9.

    Article  PubMed  Google Scholar 

  58. Rojas DC, Maharajh K, Teale P, Rodgers SJ. Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry. 2008;8:66.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, et al. Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry. 2004;161:490–500.

    Article  PubMed  Google Scholar 

  60. Parker DA, Hamm JP, McDowell JE, Keedy SK, Gershon ES, Ivleva EI, et al. Auditory steady-state EEG response across the schizo-bipolar spectrum. Schizophr Res. 2019;209:218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rosburg T, Boutros NN, Ford JM. Reduced auditory evoked potential component N100 in schizophrenia-a critical review. Psychiatry Res. 2008;161:259–74.

    Article  PubMed  Google Scholar 

  62. Salisbury DF, Collins KC, McCarley RW. Reductions in the N1 and P2 auditory event-related potentials in first-hospitalized and chronic schizophrenia. Schizophr Bull. 2010;36:991–1000.

    Article  PubMed  Google Scholar 

  63. Ahveninen J, Jääskeläinen IP, Osipova D, Huttunen MO, Ilmoniemi RJ, Kaprio J, et al. Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia. Biol Psychiatry. 2006;60:612–20.

    Article  PubMed  Google Scholar 

  64. McKenna JT, Thankachan S, Uygun DS, Shukla C, McNally JM, Schiffino FL, et al. Basal forebrain parvalbumin neurons mediate arousals from sleep induced by hypercarbia or auditory stimuli. Curr Biol. 2020;30:2379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hwang E, Brown RE, Kocsis B, Kim T, McKenna JT, McNally JM, et al. Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct. 2019;224:1505–18.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sullivan EM, Timi P, Hong LE, O’Donnell P. Effects of NMDA and GABA-A receptor antagonism on auditory steady-state synchronization in awake behaving rats. Int J Neuropsychopharmacol. 2015;18:pyu118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tek C, Gold J, Blaxton T, Wilk C, McMahon RP, Buchanan RW. Visual perceptual and working memory impairments in schizophrenia. Arch Gen Psychiatry. 2002;59:146–53.

    Article  PubMed  Google Scholar 

  68. Heckers S, Curran T, Goff D, Rauch SL, Fischman AJ, Alpert NM, et al. Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biol Psychiatry. 2000;48:651–7.

    Article  CAS  PubMed  Google Scholar 

  69. Rajagopal L, Massey BW, Huang M, Oyamada Y, Meltzer HY. The novel object recognition test in rodents in relation to cognitive impairment in schizophrenia. Curr Pharm Des. 2014;20:5104–14.

    Article  CAS  PubMed  Google Scholar 

  70. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron 2012;76:695–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dugladze T, Lepsveridze E, Breustedt J, Kehrer C, Heinemann U, Gloveli T. Effects of phencyclidines on signal transfer from the entorhinal cortex to the hippocampus in rats. Neurosci Lett. 2004;354:185–8.

    Article  CAS  PubMed  Google Scholar 

  72. Gloveli T, Iserhot C, Schmitz D, Castrén E, Behr J, Heinemann U. Systemic administration of the phencyclidine compound MK-801 affects stimulus-induced field potentials selectively in layer III of rat medial entorhinal cortex. Neurosci Lett. 1997;221:93–96.

    Article  CAS  PubMed  Google Scholar 

  73. Kehrer C, Dugladze T, Maziashvili N, Wójtowicz A, Schmitz D, Heinemann U, et al. Increased inhibitory input to CA1 pyramidal cells alters hippocampal gamma frequency oscillations in the MK-801 model of acute psychosis. Neurobiol Dis. 2007;25:545–52.

    Article  CAS  PubMed  Google Scholar 

  74. Väisänen J, Lindén AM, Lakso M, Wong G, Heinemann U, Castrén E. Excitatory actions of NMDA receptor antagonists in rat entorhinal cortex and cultured entorhinal cortical neurons. Neuropsychopharmacology 1999;21:137–46.

    Article  PubMed  Google Scholar 

  75. Do JP, Xu M, Lee S-H, Chang W-C, Zhang S, Chung S, et al. Cell type-specific long-range connections of basal forebrain circuit. Elife. 2016;5:e13214.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Sci Rep. 2019;9:2570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hayden BY, Smith DV, Platt ML. Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proc Natl Acad Sci USA. 2009;106:5948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ, et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci USA. 2012;109:16720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to dedicate this paper to Dr Robert W. McCarley, who passed away on May 27th, 2017. The authors are deeply grateful for his support and his encouragement to test the ideas presented in this study, which were informed by his studies of patients with schizophrenia. The work was supported by grants from VA Biomedical Laboratory and Clinical Science Research and Development Service Awards: VA CDA IK2BX002130 (JMM), IK2BX004905 (DSU), and Merit Awards I01BX004500 (JMM), I01 BX004673 (REB), I01BX001356 (REB), I01 CX001443 (KMS), I01BX002774 (RES), NIH support from R01-MH039683 (REB),  R01-MH093540 (KMS), R21-NS079866 (REB), R21-NS093000 (REB), T32-MH016259 (DDA), T32-HL007901(FLS, FK & DSU), F32-MH119838 (FLS), and P01-HL095491(RES), and the SURE fellowship program, Stonehill College (LKR). JMM, JTM, DSU, KMS, and REB are Research Health Scientists at VA Boston Healthcare System. The contents of this work do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. McNally.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. JTM received partial salary compensation and funding from Merck MISP (Merck Investigator Sponsored Programs) but has no conflict of interest with this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNally, J.M., Aguilar, D.D., Katsuki, F. et al. Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Mol Psychiatry 26, 3461–3475 (2021). https://doi.org/10.1038/s41380-020-0840-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0840-3

This article is cited by

Search

Quick links