Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia

Abstract

Chronic cerebral hypoperfusion is associated with vascular dementia (VaD). Cerebral hypoperfusion may initiate complex molecular and cellular inflammatory pathways that contribute to long-term cognitive impairment and memory loss. Here we used a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate its effect on the innate immune response—particularly the inflammasome signaling pathway. Comprehensive analyses revealed that chronic cerebral hypoperfusion induces a complex temporal expression and activation of inflammasome components and their downstream products (IL-1β and IL-18) in different brain regions, and promotes activation of apoptotic and pyroptotic cell death pathways. Polarized glial-cell activation, white-matter lesion formation and hippocampal neuronal loss also occurred in a spatiotemporal manner. Moreover, in AIM2 knockout mice we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis, as well as resistance to chronic microglial activation, myelin breakdown, hippocampal neuronal loss, and behavioral and cognitive deficits following BCAS. Hence, we have demonstrated that activation of the AIM2 inflammasome substantially contributes to the pathophysiology of chronic cerebral hypoperfusion-induced brain injury and may therefore represent a promising therapeutic target for attenuating cognitive impairment in VaD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of chronic cerebral hypoperfusion on inflammasome activation and cell death in the cerebral cortex and hippocampus over time following BCAS.
Fig. 2: Effect of chronic cerebral hypoperfusion on the levels of glial activation, white-matter integrity, and hippocampal neuronal density in the cerebral cortex and hippocampus following BCAS.
Fig. 3: Effect of chronic cerebral hypoperfusion on inflammasome-mediated programmed cell death in AIM2 KO mice following BCAS.
Fig. 4: Effect of chronic cerebral hypoperfusion on glial activation and myelin expression in the cerebral cortex and hippocampus of AIM2 KO mice following BCAS.
Fig. 5: Effect of chronic cerebral hypoperfusion on cortical white-matter integrity and hippocampal neuronal density in AIM2 KO mice following BCAS.
Fig. 6: Effect of chronic cerebral hypoperfusion on explorative locomotive behavior and spatial memory in AIM2 KO mice following BCAS.

Similar content being viewed by others

References

  1. Wolters FJ, Ikram MA. Epidemiology of vascular dementia. Arterioscler Thromb Vasc Biol. 2019;39:1542–9.

    CAS  PubMed  Google Scholar 

  2. Van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen CLH, et al. Vascular cognitive impairment. Nat Rev Dis Prim. 2018;4:18003.

    PubMed  Google Scholar 

  3. Alber J, Alladi S, Bae HJ, Barton DA, Beckett LA, Bell JM, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement. 2019;5:107–17.

    Google Scholar 

  4. Schmitz M, Hermann P, Oikonomou P, Stoeck K, Ebert E, Poliakova T, et al. Cytokine profiles and the role of cellular prion protein in patients with vascular dementia and vascular encephalopathy. Neurobiol Aging. 2015;36:2597–606.

    CAS  PubMed  Google Scholar 

  5. Zhou Y, Zhang J, Wang L, Chen Y, Wan Y, He Y, et al. Interleukin-1β impedes oligodendrocyte progenitor cell recruitment and white matter repair following chronic cerebral hypoperfusion. Brain Behav Immun. 2017;60:93–105.

    CAS  PubMed  Google Scholar 

  6. Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev. 2013;12:941–66.

    CAS  PubMed  Google Scholar 

  7. Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis. 2013;4:e790.

    CAS  PubMed  Google Scholar 

  8. Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10:465.

    Google Scholar 

  9. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493:674–8.

    CAS  PubMed  Google Scholar 

  10. Johann S, Heitzer M, Kanagaratnam M, Goswami A, Rizo T, Weis J, et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia. 2015;63:2260–73.

    PubMed  Google Scholar 

  11. Poh L, Kang SW, Baik SH, Ng GYQ, She DT, Balaganapathy P, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 2019;75:34–47.

    CAS  PubMed  Google Scholar 

  12. Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7.

    CAS  PubMed  Google Scholar 

  13. Ball DP, Taabazuing CY, Griswold AR, Orth EL, Rao SD, Kotliar IB, et al. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci Alliance. 2020;3:3.

    Google Scholar 

  14. Yuan B, Zhou XM, You ZQ, Xu WD, Fan JM, Chen SJ, et al. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis. 2020;11:76.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun. 2019;10:1689.

    PubMed  PubMed Central  Google Scholar 

  17. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.

    CAS  PubMed  Google Scholar 

  18. McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A. 2018;115:E6065–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dempsey C, Rubio Araiz A, Bryson KJ, Finucane O, Larkin C, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun. 2017;61:306–16.

    CAS  PubMed  Google Scholar 

  20. Chen J, Shu S, Chen Y, Liu Z, Yu L, Yang L, et al. AIM2 deletion promotes neuroplasticity and spatial memory of mice. Brain Res Bull. 2019;152:85–94.

    CAS  PubMed  Google Scholar 

  21. Briard B, Place DE, Kanneganti TD. DNA sensing in the innate immune response. Physiology. 2020;35:112–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jakobs C, Perner S, Hornung V. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS ONE. 2015;10:e0131702.

    PubMed  PubMed Central  Google Scholar 

  24. Xiao TS. The nucleic acid-sensing inflammasomes. Immunol Rev. 2015;265:103–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Paganelli R, Di Iorio A, Patricelli L, Ripani F, Sparvieri E, Faricelli R, et al. Proinflammatory cytokines in sera of elderly patients with dementia: levels in vascular injury are higher than those of mild-moderate Alzheimer’s disease patients. Exp Gerontol. 2002;37:257–63.

    CAS  PubMed  Google Scholar 

  26. Yasutake C, Kuroda K, Yanagawa T, Okamura T, Yoneda H. Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer’s disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci. 2006;256:402–6.

    PubMed  Google Scholar 

  27. Zuliani G, Ranzini M, Guerra G, Rossi L, Munari MR, Zurlo A, et al. Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res. 2007;41:686–93.

    CAS  PubMed  Google Scholar 

  28. Mulugeta E, Molina-Holgado F, Elliott MS, Hortobagyi T, Perry R, Kalaria RN, et al. Inflammatory mediators in the frontal lobe of patients with mixed and vascular dementia. Dement Geriatr Cogn Disord. 2008;25:278–86.

    CAS  PubMed  Google Scholar 

  29. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke. 2004;35:2598–603.

    PubMed  Google Scholar 

  30. Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke. 2007;38:2826–32.

    PubMed  Google Scholar 

  31. Washida K, Hattori Y, Ihara M. Animal models of chronic cerebral hypoperfusion: from mouse to primate. Int J Mol Sci. 2019;20:6176.

    CAS  PubMed Central  Google Scholar 

  32. Wilson JE, Petrucelli AS, Chen L, Koblansky AA, Truax AD, Oyama Y, et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med. 2015;21:906–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Khan MB, Hafez S, Hoda MN, Baban B, Wagner J, Awad ME, et al. Chronic remote ischemic conditioning is cerebroprotective and induces vascular remodeling in a VCID model. Transl Stroke Res. 2018;9:51–63.

    CAS  PubMed  Google Scholar 

  34. Fann DY, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, et al. Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol. 2018;55:1082–96.

    CAS  PubMed  Google Scholar 

  35. Nishio K, Ihara M, Yamasaki N, Kalaria RN, Maki T, Fujita Y, et al. A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke. 2010;41:1278–84.

    PubMed  Google Scholar 

  36. Thaung C, Arnold K, Jackson IJ, Coffey PJ. Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett. 2002;325:21–4.

    CAS  PubMed  Google Scholar 

  37. Mitchiner JC, Pinto LH, Vanable JW Jr. Visually evoked eye movements in the mouse (Mus musculus). Vis Res. 1976;16:1169–71.

    CAS  PubMed  Google Scholar 

  38. Wong P, Chang CC, Marx CE, Caron MG, Wetsel WC, Zhang X. Pregnenolone rescues schizophrenia-like behavior in dopamine transporter knockout mice. PLoS ONE. 2012;7:e51455.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Madar R, Rotter A, Waldman Ben-Asher H, Mughal MR, Arumugam TV, Wood WH III, et al. Postnatal TLR2 activation impairs learning and memory in adulthood. Brain Behav Immun. 2015;48:301–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev. 2015;24:29–39.

    CAS  PubMed  Google Scholar 

  41. Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 2012;28:137–61.

    CAS  PubMed  Google Scholar 

  42. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.

    CAS  PubMed  Google Scholar 

  43. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156:1193–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol. 2019;40:1035–52.

    CAS  PubMed  Google Scholar 

  45. Shaw K, Bell L, Boyd K, Grijseels DM, Clarke D, Bonnar O, et al. Hippocampus has lower oxygenation and weaker control of brain blood flow than cortex, due to microvascular differences. 2019. https://doi.org/10.1101/835728.

  46. Almeida A, Allen KL, Bates TE, Clark JB. Effect of reperfusion following cerebral ischaemia on the activity of the mitochondrial respiratory chain in the gerbil brain. J Neurochemistry. 2002;65:1698–703.

    Google Scholar 

  47. Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020;14:51.

    PubMed  PubMed Central  Google Scholar 

  48. Heuser D, Guggenberger H. Ionic changes in brain ischaemia and alterations produced by drugs. Br J Anaesth. 1985;57:23–33.

    CAS  PubMed  Google Scholar 

  49. Bernbaum M, Menon BK, Fick G, Smith EE, Goyal M, Frayne R, et al. Reduced blood flow in normal white matter predicts development of leukoaraiosis. J Cereb Blood Flow Metab. 2015;35:1610.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683–9.

    CAS  PubMed  Google Scholar 

  51. Fernando MS, O’Brien JT, Perry RH, English P, Forster G, McMeekin W, et al. Comparison of the pathology of cerebral white matter with post-mortem magnetic resonance imaging (MRI) in the elderly brain. Neuropathol Appl Neurobiol. 2004;30:385–95.

    CAS  PubMed  Google Scholar 

  52. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? J Am Heart Assoc. 2015;4:001140.

    PubMed  Google Scholar 

  53. Mankin EA, Diehl GW, Sparks FT, Leutgeb S, Leutgeb JK. Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron. 2015;85:190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mao H, Elkin BS, Genthikatti VV, Morrison B III, Yang KH. Why is CA3 more vulnerable than CA1 in experimental models of controlled cortical impact-induced brain injury? J Neurotrauma. 2013;30:1521.

    PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu PJ, Liu HY, Huang TN, Hsueh YP. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Sci Rep. 2016;6:32405.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119:182–92.

    CAS  PubMed  Google Scholar 

  58. Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, et al. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab. 2014;34:450–9.

    CAS  PubMed  Google Scholar 

  59. Zhang SR, Piepke M, Chu HX, Broughton BR, Shim R, Wong CH, et al. IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke. JCI Insight. 2018;3:18.

    Google Scholar 

  60. Roberts JM, Maniskas ME, Bix GJ. Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood–brain barrier integrity in mice. PLoS ONE. 2018;13:e0195765.

    PubMed  PubMed Central  Google Scholar 

  61. Liu J, Yang D, Wang X, Zhu Z, Wang T, Ma A, et al. Neutrophil extracellular traps and dsDNA predict outcomes among patients with ST-elevation myocardial infarction. Sci Rep. 2019;9:11599.

    PubMed  PubMed Central  Google Scholar 

  62. Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3:eaar6676.

    PubMed  Google Scholar 

  63. Kim H, Seo JS, Lee SY, Ha KT, Choi BT, Shin YI, et al. AIM2 inflammasome contributes to brain injury and chronic post-stroke cognitive impairment in mice. Brain Behav Immun. 2020;87:765–76.

    CAS  PubMed  Google Scholar 

  64. Ward R, Li W, Abdul Y, Jackson L, Dong G, Jamil S, et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharm Res. 2019;142:237–50.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Jenny P. Ting (University of North Carolina, Chapel Hill, Chapel Hill, NC, USA) for providing the AIM2-deficient mice. Supplementary Figs. 1 and 9a in this article were created using BioRender.

Funding

This work was supported by the National Medical Research Council Research Grants (NMRC-CBRG-0102/2016 and NMRC/OFIRG/0036/2017), Singapore and the startup fund to TVA from La Trobe University, Melbourne, Australia.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: T.V.A., L.P., and D.Y.F.; experiment or data collection: T.V.A., L.P., P.W., H.M.L., S.L.F., S-.W.K., V.R., S.S., D.Y.F., V.R.I., and N.P.; data analysis: L.P., P.W., V.R., S.S., D.Y.F., and T.V.A.; data interpretation: L.P., T.V.A., and D.Y.F; writing-manuscript preparation and intellectual input: T.V.A., L.P., D.Y.F., M.B.K., G.R.D., C.G.S., D.C.H., D-.G.J., M.K.P.L., C.L-.H.C., and L.H.K.L.; supervision and administration: T.V.A., D.Y.F., M.K.P.L., and C.L-.H.C.

Corresponding authors

Correspondence to David Y. Fann or Thiruma V. Arumugam.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poh, L., Fann, D.Y., Wong, P. et al. AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Mol Psychiatry 26, 4544–4560 (2021). https://doi.org/10.1038/s41380-020-00971-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00971-5

This article is cited by

Search

Quick links