Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered neurochemistry in the anterior white matter of bipolar children and adolescents: a multivoxel 1H MRS study

Abstract

Abnormalities within frontal lobe gray and white matter of bipolar disorder (BD) patients have been consistently reported in adult and pediatric studies, yet little is known about the neurochemistry of the anterior white matter (AWM) in pediatric BD and how medication status may affect it. The present cross-sectional 3T 1H MRS study is the first to use a multivoxel approach to study the AWM of BD youth. Absolute metabolite levels from four bilateral AWM voxels were collected from 49 subjects between the ages of 8 and 18 (25 healthy controls (HC); 24 BD) and quantified. Our study found BD subjects to have lower levels of N-acetylaspartate (NAA) and glycerophosphocholine plus phosphocholine (GPC + PC), metabolites that are markers of neuronal viability and phospholipid metabolism and have also been implicated in adult BD. Further analysis indicated that the observed patterns were mostly driven by BD subjects who were medicated at the time of scanning and had an ADHD diagnosis. Although limited by possible confounding effects of mood state, medication, and other mood comorbidities, these findings serve as evidence of altered neurochemistry in BD youth that is sensitive to medication status and ADHD comorbidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Voxel locations. Metabolite levels were quantified from four voxels in the anterior white matter.
Fig. 2: Metabolite levels by subject group.

Similar content being viewed by others

References

  1. Goldstein BI, Birmaher B. Prevalence, clinical presentation and differential diagnosis of pediatric bipolar disorder. Isr J Psychiatry Relat Sci. 2012;49:3–14.

    PubMed  PubMed Central  Google Scholar 

  2. Nasrallah HA. Neurodevelopmental aspects of bipolar affective disorder. Biol Psychiatry. 1991;29:1–2.

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg ME. Cortical function: the prefrontal cortex. Science. 1989;246:681–2.

    Article  CAS  PubMed  Google Scholar 

  4. Rimol LM, Hartberg CB, Nesvåg R, Fennema-Notestine C, Hagler DJ Jr, Pung CJ, et al. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry. 2010;68:41–50.

    Article  PubMed  Google Scholar 

  5. Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney DS, Pine DS, et al. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. Arch Gen Psychiatry. 2005;62:734–41.

    Article  PubMed  Google Scholar 

  6. Yurgelun-Todd DA, Silveri MM, Gruber SA, Rohan ML, Pimentel PJ. White matter abnormalities observed in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord. 2007;9:504–12.

    Article  PubMed  Google Scholar 

  7. Frazier JA, Breeze JL, Papadimitriou G, Kennedy DN, Hodge SM, Moore CM, et al. White matter abnormalities in children with and at risk for bipolar disorder. Bipolar Disord. 2007;9:799–809.

    Article  PubMed  Google Scholar 

  8. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    Article  CAS  PubMed  Google Scholar 

  9. Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: an integrative review. Psychol Bull. 2017;143:1033–81.

    Article  PubMed  Google Scholar 

  10. Stanley JA, Pettegrew JW, Keshavan MS. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings-part I. Biol Psychiatry. 2000;48:357–68.

    Article  CAS  PubMed  Google Scholar 

  11. Stanley JA, Raz N. Functional magnetic resonance spectroscopy: the ‘New’ MRS for cognitive neuroscience and psychiatry research. Front Psychiatry. 2018;9:76.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265:54–84.

    Article  CAS  PubMed  Google Scholar 

  13. Stanley JA, Vemulapalli M, Nutche J, Montrose DM, Sweeney JA, Pettegrew JW, et al. Reduced N-acetyl-aspartate levels in schizophrenia patients with a younger onset age: a single-voxel 1H spectroscopy study. Schizophr Res. 2007;93:23–32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yüksel C, Öngür D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 2010;68:785–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Silverstone PH, McGrath BM, Kim H. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord. 2005;7:1–10.

    Article  CAS  PubMed  Google Scholar 

  16. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci. 1993;15:289–98.

    Article  CAS  PubMed  Google Scholar 

  17. Sartorius A, Lugenbiel P, Mahlstedt MM, Ende G, Schloss P, Vollmayr B. Proton magnetic resonance spectroscopic creatine correlates with creatine transporter protein density in rat brain. J Neurosci Methods. 2008;172:215–9.

    Article  CAS  PubMed  Google Scholar 

  18. Brambilla P, Stanley JA, Nicoletti MA, Sassi RB, Mallinger AG, Frank E, et al. 1H magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in bipolar disorder patients. J Affect Disord. 2005;86:61–7.

    Article  PubMed  Google Scholar 

  19. Galińska-Skok B, Małus A, Konarzewska B, Rogowska-Zach A, Milewski R, Tarasów E, et al. Choline compounds of the frontal lobe and temporal glutamatergic system in bipolar and schizophrenia proton magnetic resonance spectroscopy study. Dis Markers. 2018;2018:3654894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Senaratne R, Milne AM, MacQueen GM, Hall GBC. Increased choline-containing compounds in the orbitofrontal cortex and hippocampus in euthymic patients with bipolar disorder: a proton magnetic resonance spectroscopy study. Psychiatry Res. 2009;172:205–9.

    Article  PubMed  Google Scholar 

  21. Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA. Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry. 2000;47:475–81.

    Article  CAS  PubMed  Google Scholar 

  22. Frye MA, Thomas MA, Yue K, Binesh N, Davanzo P, Ventura J, et al. Reduced concentrations of N-acetylaspartate (NAA) and the NAA-creatine ratio in the basal ganglia in bipolar disorder: a study using 3-Tesla proton magnetic resonance spectroscopy. Psychiatry Res. 2007;154:259–65.

    Article  CAS  PubMed  Google Scholar 

  23. Cecil KM, DelBello MP, Sellars MC, Strakowski SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol. 2003;13:545–55.

    Article  PubMed  Google Scholar 

  24. Olvera RL, Caetano SC, Fonseca M, Nicoletti M, Stanley JA, Chen HH, et al. Low levels of N-acetyl aspartate in the left dorsolateral prefrontal cortex of pediatric bipolar patients. J Child Adolesc Psychopharmacol. 2007;17:461–73.

    Article  PubMed  Google Scholar 

  25. Caetano SC, Olvera RL, Hatch JP, Sanches M, Chen HH, Nicoletti M, et al. Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a 1H magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry. 2011;50:85–94.

    Article  PubMed  Google Scholar 

  26. Zhong S, Wang Y, Zhao G, Xiang Q, Ling X, Liu S, et al. Similarities of biochemical abnormalities between major depressive disorder and bipolar depression: a proton magnetic resonance spectroscopy study. J Affect Disord. 2014;168:380–6.

    Article  CAS  PubMed  Google Scholar 

  27. Bustillo JR, Jones T, Qualls C, Chavez L, Lin D, Lenroot RK, et al. Proton magnetic resonance spectroscopic imaging of gray and white matter in bipolar-I and schizophrenia. J Affect Disord. 2019;246:745–53.

    Article  PubMed  Google Scholar 

  28. Bhangoo RK, Lowe CH, Myers FS, Treland J, Curran J, Towbin KE, et al. Medication use in children and adolescents treated in the community for bipolar disorder. J Child Adolesc Psychopharmacol. 2003;13:515–22.

    Article  PubMed  Google Scholar 

  29. Brambilla P, Stanley JA, Sassi RB, Nicoletti MA, Mallinger AG, Keshavan MS, et al. 1H MRS study of dorsolateral prefrontal cortex in healthy individuals before and after lithium administration. Neuropsychopharmacology. 2004;29:1918–24.

    Article  CAS  PubMed  Google Scholar 

  30. Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL, et al. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry. 2004;56:340–8.

    Article  CAS  PubMed  Google Scholar 

  31. Hajek T, Bauer M, Pfennig A, Cullis J, Ploch J, O’Donovan C, et al. Large positive effect of lithium on prefrontal cortex N-acetylaspartate in patients with bipolar disorder: 2-centre study. J Psychiatry Neurosci. 2012;37:185–92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moore CM, Frazier JA, Glod CA, Breeze JL, Dieterich M, Finn CT, et al. Glutamine and glutamate levels in children and adolescents with bipolar disorder: a 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Am Acad Child Adolesc Psychiatry. 2007;46:524–34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Spencer TJ, Biederman J, Wozniak J, Faraone SV, Wilens TE, Mick E. Parsing pediatric bipolar disorder from its associated comorbidity with the disruptive behavior disorders. Biol Psychiatry. 2001;49:1062–70.

    Article  CAS  PubMed  Google Scholar 

  34. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36:980–8.

    Article  CAS  PubMed  Google Scholar 

  35. Poznanski E. Depression in children and adolescents: an overview. Psychiatr Ann. 1985;15:365–7.

    Article  Google Scholar 

  36. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

    Article  CAS  PubMed  Google Scholar 

  37. Schubert F, Gallinat J, Seifert F, Rinneberg H. Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. Neuroimage. 2004;21:1762–71.

    Article  PubMed  Google Scholar 

  38. Haase A, Frahm J, Hänicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985;30:341–4.

    Article  CAS  PubMed  Google Scholar 

  39. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94.

    Article  CAS  PubMed  Google Scholar 

  40. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208–19.

    Article  PubMed  Google Scholar 

  41. Cao B, Stanley JA, Passos IC, Mwangi B, Selvaraj S, Zunta-Soares GB, et al. Elevated choline-containing compound levels in rapid cycling bipolar disorder. Neuropsychopharmacology. 2017;42:2252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260–4.

    Article  CAS  PubMed  Google Scholar 

  43. Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson Ser B. 1993;102:9–19.

    Article  CAS  Google Scholar 

  44. Baslow MH, Baslow MH, Burlina AP. N-acetylaspartate metabolism underlays the structural and functional units of the vertebrate brain: a bioenergetic rationale for clinical observations of changes in the neuronal biomarker ‘NAA’ in many human brain disorders. Bioenerg: Open Access. 2012;01:1–10.

    Article  Google Scholar 

  45. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry. 2005;10:900–19.

    Article  CAS  PubMed  Google Scholar 

  46. Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MAA. Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem. 2003;86:824–35.

    Article  CAS  PubMed  Google Scholar 

  47. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry. 2004;61:300.

    Article  CAS  PubMed  Google Scholar 

  48. Atmaca M, Yildirim H, Ozdemir H, Poyraz AK, Tezcan E, Ogur E. Hippocampal 1H MRS in first-episode bipolar I patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1235–9.

    Article  CAS  PubMed  Google Scholar 

  49. Cecil KM, DelBello MP, Morey R, Strakowski SM. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord. 2002;4:357–65.

    Article  CAS  PubMed  Google Scholar 

  50. Ansell GB, Spanner S. The source of choline for acetylcholine synthesis. Cholinergic Mech Psychopharmacol. 1978:431–45.

  51. Sanders LM, Zeisel SH. Choline: dietary requirements and role in brain development. Nutr Today. 2007;42:181–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stagg C, Rothman DL. Magnetic resonance spectroscopy: Tools for Neuroscience Research and Emerging Clinical Applications. Academic Press. 2013:105–6.

  53. Cao B, Stanley JA, Selvaraj S, Mwangi B, Passos IC, Zunta-Soares GB, et al. Evidence of altered membrane phospholipid metabolism in the anterior cingulate cortex and striatum of patients with bipolar disorder I: a multi-voxel (1)H MRS study. J Psychiatr Res. 2016;81:48–55.

    Article  PubMed  Google Scholar 

  54. Wu HE, Melicher T, Cao B, Sanches M, Stanley JA, Zunta-Soares G, et al. MR spectroscopy findings of the Basal Ganglia in bipolar disorders: a systematic review. Curr Psychiatry Rev. 2018;14:99–104.

    Article  Google Scholar 

  55. Frey BN, Stanley JA, Nicoletti MA, Hatch JP, Soares JC. Corrected values of brain metabolites for the article: ‘Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo1H MRS study’. Bipolar Disord. 2008;10:849.

    Article  PubMed  Google Scholar 

  56. Lacerda ALT, Caetano D, Keshavan MS. Urinary pH in panic disorder. Psychiatry Res. 2005;134:199–203.

    Article  CAS  PubMed  Google Scholar 

  57. Stoll AL, Sachs GS, Cohen BM, Lafer B, Christensen JD, Renshaw PF. Choline in the treatment of rapid-cycling bipolar disorder: clinical and neurochemical findings in lithium-treated patients. Biol Psychiatry. 1996;40:382–8.

    Article  CAS  PubMed  Google Scholar 

  58. Yildiz-Yesiloglu A, Ankerst DP. Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:969–95.

    Article  CAS  PubMed  Google Scholar 

  59. Wilson GM, Flibotte S, Chopra V, Melnyk BL, Honer WG, Holt RA. DNA copy-number analysis in bipolar disorder and schizophrenia reveals aberrations in genes involved in glutamate signaling. Hum Mol Genet. 2006;15:743–9.

    Article  CAS  PubMed  Google Scholar 

  60. Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord. 2012;14:478–87.

    Article  CAS  PubMed  Google Scholar 

  61. Atagün Mİ, Şıkoğlu EM, Can SS, Uğurlu GK, Kaymak SU, Çayköylü A, et al. Neurochemical differences between bipolar disorder type I and II in superior temporal cortices: a proton magnetic resonance spectroscopy study. J Affect Disord. 2018;235:15–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ketter TA, Kimbrell TA, George MS, Dunn RT, Speer AM, Benson BE, et al. Effects of mood and subtype on cerebral glucose metabolism in treatment-resistant bipolar disorder. Biol Psychiatry. 2001;49:97–109.

    Article  CAS  PubMed  Google Scholar 

  63. Axelson D, Birmaher B, Strober M, Gill MK, Valeri S, Chiappetta L, et al. Phenomenology of children and adolescents with bipolar spectrum disorders. Arch Gen Psychiatry. 2006;63:1139.

    Article  PubMed  Google Scholar 

  64. Birmaher B, Axelson D, Strober M, Gill MK, Valeri S, Chiappetta L, et al. Clinical course of children and adolescents with bipolar spectrum disorders. Arch Gen Psychiatry. 2006;63:175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Danner S, Fristad MA, Arnold LE, Youngstrom EA, Birmaher B, Horwitz SM, et al. Early-onset bipolar spectrum disorders: diagnostic issues. Clin Child Fam Psychol Rev. 2009;12:271–93.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Axelson DA, Birmaher B, Strober MA, Goldstein BI, Ha W, Gill MK, et al. Course of subthreshold bipolar disorder in youth: diagnostic progression from bipolar disorder not otherwise specified. J Am Acad Child Adolesc Psychiatry. 2011;50:1001. e3.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kronenberg G, Ende G, Alm B, Deuschle M, Heuser I, Colla M, et al. and reduced choline levels in the anterior cingulum following chronic methylphenidate. A spectroscopic test-retest study in adult ADHD. Eur Arch Psychiatry Clin Neurosci. 2008;258:446–50.

    Article  PubMed  Google Scholar 

  68. Wiguna T, Guerrero APS, Wibisono S, Sastroasmoro S. Effect of 12-week administration of 20-mg long-acting methylphenidate on Glu/Cr, NAA/Cr, Cho/Cr, and mI/Cr ratios in the prefrontal cortices of school-age children in Indonesia: a study using 1H magnetic resonance spectroscopy (MRS). Clin Neuropharmacol. 2012;35:81–5.

    Article  CAS  PubMed  Google Scholar 

  69. Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A, et al. Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J Clin Psychiatry. 2013;74:902–17.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tafazoli S, O’Neill J, Bejjani A, Ly R, Salamon N, McCracken JT, et al. 1H MRSI of middle frontal gyrus in pediatric ADHD. J Psychiatr Res. 2013;47:505–12.

    Article  PubMed  Google Scholar 

  71. Spear LP. Adolescent neurodevelopment. J Adolesc Health. 2013;52:S7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  72. De Stefano N, Filippi M, Miller D, Pouwels PJ, Rovira A, Gass A, et al. Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology.2007;69:1942–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported was supported in part by NIMH grant R01 085667, the Dunn Foundation, and the Pat Rutherford, Jr. Endowed Chair in Psychiatry to JCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonika Tannous.

Ethics declarations

Conflict of interest

JCS has received grants/research support from BMS, Forrest, J&J, Merck, Stanley Medical Research Institute, NIH and has been a speaker for Pfizer and Abbott. No other authors have conflicts to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tannous, J., Cao, B., Stanley, J.A. et al. Altered neurochemistry in the anterior white matter of bipolar children and adolescents: a multivoxel 1H MRS study. Mol Psychiatry 26, 4117–4126 (2021). https://doi.org/10.1038/s41380-020-00927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00927-9

Search

Quick links