Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Identifying biological markers for improved precision medicine in psychiatry

Abstract

Mental disorders represent an increasing personal and financial burden and yet treatment development has stagnated in recent decades. Current disease classifications do not reflect psychobiological mechanisms of psychopathology, nor the complex interplay of genetic and environmental factors, likely contributing to this stagnation. Ten years ago, the longitudinal IMAGEN study was designed to comprehensively incorporate neuroimaging, genetics, and environmental factors to investigate the neural basis of reinforcement-related behavior in normal adolescent development and psychopathology. In this article, we describe how insights into the psychobiological mechanisms of clinically relevant symptoms obtained by innovative integrative methodologies applied in IMAGEN have informed our current and future research aims. These aims include the identification of symptom groups that are based on shared psychobiological mechanisms and the development of markers that predict disease course and treatment response in clinical groups. These improvements in precision medicine will be achieved, in part, by employing novel methodological tools that refine the biological systems we target. We will also implement our approach in low- and medium-income countries to understand how distinct environmental, socioeconomic, and cultural conditions influence the development of psychopathology. Together, IMAGEN and related initiatives strive to reduce the burden of mental disorders by developing precision medicine approaches globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet. 2013;382:1575–86.

    PubMed  Google Scholar 

  2. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21:718–79.

    Article  CAS  PubMed  Google Scholar 

  3. Trautmann S, Rehm J, Wittchen HU. The economic costs of mental disorders: do our societies react appropriately to the burden of mental disorders? EMBO Rep. 2016;17:1245–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Disco. 2007;6:521–32.

    Article  CAS  Google Scholar 

  5. Perry CJ, Lawrence AJ. Hurdles in basic science translation. Front Pharm. 2017;8:478.

    Article  CAS  Google Scholar 

  6. van der Doef TF, Zaragoza Domingo S, Jacobs GE, Drevets WC, Marston HM, Nathan PJ, et al. New approaches in psychiatric drug development. Eur Neuropsychopharmacol. 2018;28:983–93.

    Article  CAS  PubMed  Google Scholar 

  7. Schumann G, Binder EB, Holte A, de Kloet ER, Oedegaard KJ, Robbins TW, et al. Stratified medicine for mental disorders. Eur Neuropsychopharmacol. 2014;24:5–50.

    Article  CAS  PubMed  Google Scholar 

  8. Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer. 2015;15:747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C, et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry. 2010;15:1128–39.

    Article  CAS  PubMed  Google Scholar 

  10. Wong CC, Schumann G. Review. Genetics of addictions: strategies for addressing heterogeneity and polygenicity of substance use disorders. Philos Trans R Soc Lond B Biol Sci. 2008;363:3213–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. O'Brien BS, Frick PJ. Reward dominance: associations with anxiety, conduct problems, and psychopathy in children. J Abnorm Child Psychol. 1996;24:223–40.

    Article  CAS  PubMed  Google Scholar 

  12. Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ. Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci. 2004;1021:33–50.

    Article  PubMed  Google Scholar 

  13. Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, Knutson B, et al. Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage. 2006;29:409–16.

    Article  PubMed  Google Scholar 

  14. Olson SL, Schilling EM, Bates JE. Measurement of impulsivity: construct coherence, longitudinal stability, and relationship with externalizing problems in middle childhood and adolescence. J Abnorm Child Psychol. 1999;27:151–65.

    Article  CAS  PubMed  Google Scholar 

  15. Winstanley CA, Eagle DM, Robbins TW. Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev. 2006;26:379–95.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Whelan R, Conrod PJ, Poline JB, Lourdusamy A, Banaschewski T, Barker GJ, et al. Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat Neurosci. 2012;15:920–5.

    Article  CAS  PubMed  Google Scholar 

  17. Castellanos-Ryan N, Struve M, Whelan R, Banaschewski T, Barker GJ, Bokde AL, et al. Neural and cognitive correlates of the common and specific variance across externalizing problems in young adolescence. Am J Psychiatry. 2014;171:1310–9.

    Article  PubMed  Google Scholar 

  18. Mumford JA, Horvath S, Oldham MC, Langfelder P, Geschwind DH, Poldrack RA. Detecting network modules in fMRI time series: a weighted network analysis approach. Neuroimage. 2010;52:1465–76.

    Article  PubMed  Google Scholar 

  19. Jia T, Macare C, Desrivieres S, Gonzalez DA, Tao C, Ji X, et al. Neural basis of reward anticipation and its genetic determinants. Proc Natl Acad Sci USA. 2016;113:3879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001;98:6917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Munafo MR, Brown SM, Hariri AR. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry. 2008;63:852–7.

    Article  CAS  PubMed  Google Scholar 

  22. Yang TT, Simmons AN, Matthews SC, Tapert SF, Frank GK, Max JE, et al. Adolescents with major depression demonstrate increased amygdala activation. J Am Acad Child Adolesc Psychiatry. 2010;49:42–51.

    PubMed  PubMed Central  Google Scholar 

  23. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Toro R, Poline JB, Huguet G, Loth E, Frouin V, Banaschewski T, et al. Genomic architecture of human neuroanatomical diversity. Mol Psychiatry. 2015;20:1011–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivieres S, Jahanshad N, et al. Common genetic variants influence human subcortical brain structures. Nature. 2015;520:224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu B, Jia T, Macare C, Banaschewski T, Bokde ALW, Bromberg U, et al. Impact of a common genetic variation associated with putamen volume on neural mechanisms of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2017;56:436–44 e434.

    Article  PubMed  Google Scholar 

  27. Silverman MH, Krueger RF, Iacono WG, Malone SM, Hunt RH, Thomas KM. Quantifying familial influences on brain activation during the monetary incentive delay task: an adolescent monozygotic twin study. Biol Psychol. 2014;103:7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348:125–32.

    Article  CAS  PubMed  Google Scholar 

  29. Hall A. The cellular functions of small GTP-binding proteins. Science. 1990;249:635–40.

    Article  CAS  PubMed  Google Scholar 

  30. Ojelade SA, Jia T, Rodan AR, Chenyang T, Kadrmas JL, Cattrell A, et al. Rsu1 regulates ethanol consumption in Drosophila and humans. Proc Natl Acad Sci USA. 2015;112:E4085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schumann G, Coin LJ, Lourdusamy A, Charoen P, Berger KH, Stacey D, et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc Natl Acad Sci USA. 2011;108:7119–24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stacey D, Bilbao A, Maroteaux M, Jia T, Easton AC, Longueville S, et al. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release. Proc Natl Acad Sci USA. 2012;109:21128–33.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez DA, Jia T, Pinzon JH, Acevedo SF, Ojelade SA, Xu B, et al. The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol Psychiatry. 2018;23:621–8.

    Article  CAS  PubMed  Google Scholar 

  34. Pena-Oliver Y, Carvalho FM, Sanchez-Roige S, Quinlan EB, Jia T, Walker-Tilley T, et al. Mouse and human genetic analyses associate kalirin with ventral striatal activation during impulsivity and with alcohol misuse. Front Genet. 2016;7:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mielenz D, Reichel M, Jia T, Quinlan EB, Stockl T, Mettang M, et al. EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Mol Psychiatry. 2018;23:1303–19.

    Article  CAS  PubMed  Google Scholar 

  36. Seedat S, Scott KM, Angermeyer MC, Berglund P, Bromet EJ, Brugha TS, et al. Cross-national associations between gender and mental disorders in the World Health Organization World Mental Health Surveys. Arch Gen Psychiatry. 2009;66:785–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Howard LM, Ehrlich AM, Gamlen F, Oram S. Gender-neutral mental health research is sex and gender biased. Lancet Psychiatry. 2017;4:9–11.

    Article  PubMed  Google Scholar 

  38. Riecher-Rossler A. Sex and gender differences in mental disorders. Lancet Psychiatry. 2017;4:8–9.

    Article  PubMed  Google Scholar 

  39. Caspi A, Taylor A, Moffitt TE, Plomin R. Neighborhood deprivation affects children's mental health: environmental risks identified in a genetic design. Psychol Sci. 2000;11:338–42.

    Article  CAS  PubMed  Google Scholar 

  40. Roberts S, Arseneault L, Barratt B, Beevers S, Danese A, Odgers CL, et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 2019;272:8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lansford JE, Dodge KA, Pettit GS, Bates JE, Crozier J, Kaplow J. A 12-year prospective study of the long-term effects of early child physical maltreatment on psychological, behavioral, and academic problems in adolescence. Arch Pediatr Adolesc Med. 2002;156:824–30.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Low NC, Dugas E, O'Loughlin E, Rodriguez D, Contreras G, Chaiton M, et al. Common stressfu life events and difficulties are associated with mental health symptos and substance use in young adolescents. BMC Psychiatry. 2012;12:116–25.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lim L, Radua J, Rubia K. Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. Am J Psychiatry. 2014;171:854–63.

    Article  PubMed  Google Scholar 

  44. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by structural and functional structural magnetic resonance imaging. Biol Psychiatry. 2012;71:286–93.

    Article  PubMed  Google Scholar 

  45. Haddad L, Schäfer A, Streit F, Lederbogen F, Grimm O, Wüst S, et al. Brain structure correlates of urban upbringing, an environmental risk factor for schizophrenia. Schizophr Bull. 2015;41:115–22.

    Article  PubMed  Google Scholar 

  46. Arseneault L, Bowes L, Shakoor S. Bullying victimization in youths and mental health problems: ‘much ado about nothing'? Psychol Med. 2010;40:717–29.

    Article  CAS  PubMed  Google Scholar 

  47. Singham T, Viding E, Schoeler T, Arseneault L, Ronald A, Cecil CM, et al. Concurrent and longitudinal contribution of exposure to bullyig in childhood to mental health: the role of vulnerability and resilience. JAMA Psychiatry. 2017;74:1112–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schaefer JD, Moffitt TE, Arseneault L, Danese A, Fisher HL, Houts R, et al. Adolescent victimization and early-adult psychopathology: approaching causal inference using a longitudinal twin study to rule out noncausal explanations. Clin Psychol Sci. 2018;6:352–71.

    Article  PubMed  Google Scholar 

  49. Quinlan EB, Barker ED, Luo Q, Banaschewski T, Bokde ALW, Bromberg U, et al. Peer victimization and its impact on adolescent brain development and psychopathology. Mol Psychiatry. 2018; https://doi.org/10.1038/s41380-018-0297-9.

  50. Quinlan EB, Cattrell A, Jia T, Artiges E, Banaschewski T, Barker G, et al. Psychosocial stress and brain function in adolescent psychopathology. Am J Psychiatry. 2017;174:785–94.

    Article  PubMed  Google Scholar 

  51. Xu J, Liu X, Ing A, Li Q, Qin W, Guo L, et al. Satellite imaging of global urbanicity relates to adolescent brain development and behavior. Lancet. (In review, 2019). BioRxiv: https://www.biorxiv.org/content/10.1101/781674v1.

  52. Engemann K, Pedersen CV, Arge L, Tsirogiannis C, Mortensen PB, Svenning J-C. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. PNAS. 2019;116:5188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van den Berg AE, Maas J, Verheij RA, Groenewegen PP. Green space as a buffer between stressful life events and health. Soc Sci Med. 2010;70:1203–10.

    Article  PubMed  Google Scholar 

  54. Buchel C, Peters J, Banaschewski T, Bokde AL, Bromberg U, Conrod PJ, et al. Blunted ventral striatal responses to anticipated rewards foreshadow problematic drug use in novelty-seeking adolescents. Nat Commun. 2017;8:14140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stringaris A, Vidal-Ribas Belil P, Artiges E, Lemaitre H, Gollier-Briant F, Wolke S, et al. The brain's response to reward anticipation and depression in adolescence: dimensionality, specificity, and longitudinal predictions in a community-based sample. Am J Psychiatry. 2015;172:1215–23.

    Article  PubMed  Google Scholar 

  56. Davis L, Uezato A, Newell JM, Frazier E. Major depression and comorbid substance use disorders. Curr Opin Psychiatry. 2008;21:14–8.

    Article  PubMed  Google Scholar 

  57. Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, et al. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature. 2014;512:185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burt KB, Whelan R, Conrod PJ, Banaschewski T, Barker GJ, Bokde AL, et al. Structural brain correlates of adolescent resilience. J Child Psychol Psychiatry. 2016;57:1287–96.

    Article  PubMed  Google Scholar 

  59. Galinowski A, Miranda R, Lemaitre H, Paillere Martinot ML, Artiges E, Vulser H, et al. Resilience and corpus callosum microstructure in adolescence. Psychol Med. 2015;45:2285–94.

    Article  CAS  PubMed  Google Scholar 

  60. Crush E, Areseneault L, Moffitt TE, Danese A, Caspi A, Jaffee SR, et al. Protective factors for psychotic experience amongst adolescents exposed to multiple forms of victimization. J Psychiatr Res. 2018;104:32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bowes L, Maughan B, Caspi A, Moffitt TE, Areseneault L. Families promote emotional and behavioural resilience to bullying: evidence of an environmental effect. J Child Psychol Psychiatry. 2010;51:809–17.

    Article  Google Scholar 

  62. Pedersen CB, Mors O, Bertelsen A, Waltoft BL, Agerbo E, McGrath JJ, et al. A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry. 2014;71:573–81.

    Article  PubMed  Google Scholar 

  63. Kessler RC, Angermeyer M, Anthony JC, de Graaf R, Demyttenaere K, Gasquet I, et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization's World Mental Health Survey Institute. World Psychiatry. 2007;6:168–76.

    PubMed  PubMed Central  Google Scholar 

  64. Schumann G, Benegal V, Yu C, Tao S, Jernigan T, Heinz A, et al. Precision medicine and global mental health. Lancet Glob Health. 2019;7:e32.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Malhotra S, Kohli A, Kapoor M, Pradhan B. Incidence of childhood psychiatric disorders in India. Indian J Psychiatry. 2009;51:101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ganesh S, Kandasamy A, Sahayaraj US, Benegal V. Adult attention deficit hyperactivity disorder in patients with substance use disorders: a study from southern India. Indian J Psychol Med. 2017;39:59–62.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Srivastava K. Urbanization and mental health. Ind Psychiatry J. 2009;18:75–76.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schlaepfer TE, Agren H, Monteleone P, Gasto C, Pitchot W, Rouillon F, et al. The hidden third: improving outcome in treatment-resistant depression. J Psychopharmacol. 2012;26:587–602.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behavior in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), Human Brain Project (HBP SGA 2, 785907), the FP7 project MATRICS (603016), the Medical Research Council Grant ‘c-VEDA’ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministeriumfür Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; Forschungsnetz AERIAL 01EE1406A, 01EE1406B), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-2, SFB 940/2), the Medical Research Foundation and Medical Research Council (grants MR/R00465X/1 and MR/S020306/1), the National Institute for Health (NIH) funded ENIGMA (grants 5U54EB020403-05 and 1R56AG058854-01). Further support was provided by grants from: ANR (project AF12-NEUR0008-01—WM2NA, and ANR-12-SAMA-0004), the Eranet Neuron (ANR-18-NEUR00002-01), the Fondation de France (00081242), the Fondation pour la Recherche Médicale (DPA20140629802), the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012, the Fondation de l’Avenir (grant AP-RM-17-013); the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Erin Burke Quinlan.

Ethics declarations

Conflict of interest

TB has served as an advisor or consultant to Actelion, Hexal Pharma, Bristol-Myers Squibb, Desitin Arzneimittel, Eli Lilly, Lundbeck, Medice, Neurim Pharmaceuticals, Novartis, Pfizer, and Shire, UCB, and Vifor Pharma; he has received conference attendance support, conference support, or speaking fees from Eli Lilly, Janssen McNeil, Medice, Novartis, and Shire, and UCB; and he is involved in clinical trials conducted by Eli Lilly, Novartis, and Shire and Viforpharma; he received royalities from Hogrefe, Kohlhammer, CIP Medien, Oxford University Press; the present work is unrelated to these relationships. GJB has received honoraria from General Electric Healthcare for teaching on scanner programming courses and acts as a consultant for IXICO. The other authors report no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinlan, E.B., Banaschewski, T., Barker, G.J. et al. Identifying biological markers for improved precision medicine in psychiatry. Mol Psychiatry 25, 243–253 (2020). https://doi.org/10.1038/s41380-019-0555-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0555-5

This article is cited by

Search

Quick links