Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute myeloid leukemia

Cytoplasmic DROSHA and non-canonical mechanisms of MiR-155 biogenesis in FLT3-ITD acute myeloid leukemia

Abstract

We report here on a novel pro-leukemogenic role of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) that interferes with microRNAs (miRNAs) biogenesis in acute myeloid leukemia (AML) blasts. We showed that FLT3-ITD interferes with the canonical biogenesis of intron-hosted miRNAs such as miR-126, by phosphorylating SPRED1 protein and inhibiting the “gatekeeper” Exportin 5 (XPO5)/RAN-GTP complex that regulates the nucleus-to-cytoplasm transport of pre-miRNAs for completion of maturation into mature miRNAs. Of note, despite the blockage of “canonical” miRNA biogenesis, miR-155 remains upregulated in FLT3-ITD+ AML blasts, suggesting activation of alternative mechanisms of miRNA biogenesis that circumvent the XPO5/RAN-GTP blockage. MiR-155, a BIC-155 long noncoding (lnc) RNA-hosted oncogenic miRNA, has previously been implicated in FLT3-ITD+ AML blast hyperproliferation. We showed that FLT3-ITD upregulates miR-155 by inhibiting DDX3X, a protein implicated in the splicing of lncRNAs, via p-AKT. Inhibition of DDX3X increases unspliced BIC-155 that is then shuttled by NXF1 from the nucleus to the cytoplasm, where it is processed into mature miR-155 by cytoplasmic DROSHA, thereby bypassing the XPO5/RAN-GTP blockage via “non-canonical” mechanisms of miRNA biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FLT3-ITD downregulates miR-126 expression.
Fig. 2: Inhibition of XPO5/RAN by SPRED1.
Fig. 3: Regulation of DDX3X activities in FLT3-ITD cells.
Fig. 4: Regulation of BIC-155 splicing by DDX3X and hnRNP U.
Fig. 5: LncRNA-hosted miR-155 transportation by NXF1.
Fig. 6: LncRNA-hosted miR-155 processing by cytoplasmic DROSHA.
Fig. 7: Regulation of miR-155 processing by DDX3X/NXF1/cytoplasmic DROSHA in BM Lin-cells from Flt3-ITD mice.

Similar content being viewed by others

References

  1. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.

    Article  CAS  PubMed  Google Scholar 

  2. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA. 2008;105:3945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget. 2017;8:3666–82.

    Article  PubMed  Google Scholar 

  4. Marcucci G, Radmacher MD, Maharry K, Mrozek K, Ruppert AS, Paschka P, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1919–28.

    Article  CAS  PubMed  Google Scholar 

  5. Wallace JA, O’Connell RM. MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood. 2017;130:1290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrozek K, et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol. 2013;31:2086–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerloff D, Grundler R, Wurm AA, Brauer-Hartmann D, Katzerke C, Hartmann JU, et al. NF-kappaB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia. 2015;29:535–47.

    Article  CAS  PubMed  Google Scholar 

  10. Wallace JA, Kagele DA, Eiring AM, Kim CN, Hu R, Runtsch MC, et al. miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response. Blood. 2017;129:3074–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Narayan N, Bracken CP, Ekert PG. MicroRNA-155 expression and function in AML: an evolving paradigm. Exp Hematol. 2018;62:1–6.

    Article  CAS  PubMed  Google Scholar 

  12. de Leeuw DC, Denkers F, Olthof MC, Rutten AP, Pouwels W, Schuurhuis GJ, et al. Attenuation of microRNA-126 expression that drives CD34+38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Res. 2014;74:2094–105.

    Article  PubMed  CAS  Google Scholar 

  13. Dorrance AM, Neviani P, Ferenchak GJ, Huang X, Nicolet D, Maharry KS, et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia. 2015;29:2143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE, et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell. 2012;11:799–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lechman ER, Gentner B, Ng SW, Schoof EM, van Galen P, Kennedy JA, et al. miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells. Cancer Cell. 2016;29:214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang B, Nguyen LXT, Li L, Zhao D, Kumar B, Wu H, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med. 2018;24:450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zorko NA, Bernot KM, Whitman SP, Siebenaler RF, Ahmed EH, Marcucci GG, et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood. 2012;120:1130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  CAS  Google Scholar 

  19. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009;114:2984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roberts TC. The microRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids. 2014;3:e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okamura M, Inose H, Masuda S. RNA export through the NPC in eukaryotes. Genes (Basel). 2015;6:124–49.

    Article  CAS  Google Scholar 

  23. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, et al. Spred is a Sprouty-related suppressor of Ras signalling. Nature. 2001;412:647–51.

    Article  CAS  PubMed  Google Scholar 

  24. Brems H, Pasmant E, Van Minkelen R, Wimmer K, Upadhyaya M, Legius E, et al. Review and update of SPRED1 mutations causing Legius syndrome. Hum Mutat. 2012;33:1538–46.

    Article  CAS  PubMed  Google Scholar 

  25. Quintanar-Audelo M, Yusoff P, Sinniah S, Chandramouli S, Guy GR. Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein (SPRED1), a tyrosine-protein phosphatase non-receptor type 11 (SHP2) substrate in the Ras/extracellular signal-regulated kinase (ERK) pathway. J Biol Chem. 2011;286:23102–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fuhrer S, Ahammer L, Ausserbichler A, Scheffzek K, Dunzendorfer-Matt T, Tollinger M. NMR resonance assignments of the EVH1 domain of neurofibromin’s recruitment factor Spred1. Biomol NMR Assign. 2017;11:305–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–8.

    Article  CAS  PubMed  Google Scholar 

  29. Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532:1–12.

    Article  CAS  PubMed  Google Scholar 

  30. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005;102:3627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M. Epstein-Barr virus latent membrane protein 1 trans-activates miR-155 transcription through the NF-kappaB pathway. Nucleic Acids Res. 2008;36:6608–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rai D, Karanti S, Jung I, Dahia PL, Aguiar RC. Coordinated expression of microRNA-155 and predicted target genes in diffuse large B-cell lymphoma. Cancer Genet Cytogenet. 2008;181:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene. 2001;274:157–67.

    Article  CAS  PubMed  Google Scholar 

  34. Lambert MP, Terrone S, Giraud G, Benoit-Pilven C, Cluet D, Combaret V, et al. The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation. Nucleic Acids Res. 2018;46:7686–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao L, Mao Y, Zhao Y, He Y. DDX3X promotes the biogenesis of a subset of miRNAs and the potential roles they played in cancer development. Sci Rep. 2016;6:32739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lossner C, Meier J, Warnken U, Rogers MA, Lichter P, Pscherer A, et al. Quantitative proteomics identify novel miR-155 target proteins. PLoS ONE. 2011;6:e22146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dolde C, Bischof J, Gruter S, Montada A, Halekotte J, Peifer C, et al. A CK1 FRET biosensor reveals that DDX3X is an essential activator of CK1epsilon. J Cell Sci. 2018;131:jcs207316.

    PubMed  PubMed Central  Google Scholar 

  38. Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, et al. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci Rep. 2016;6:25996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J, et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res. 2005;65:9643–50.

    Article  CAS  PubMed  Google Scholar 

  40. Dardenne E, Polay Espinoza M, Fattet L, Germann S, Lambert MP, Neil H, et al. RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation. Cell Rep. 2014;7:1900–13.

    Article  CAS  PubMed  Google Scholar 

  41. Fu XD, Ares M Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15:689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, et al. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem. 2013;288:8575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye J, Beetz N, O’Keeffe S, Tapia JC, Macpherson L, Chen WV, et al. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proc Natl Acad Sci USA. 2015;112:E3020–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell. 1998;1:649–59.

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bevilacqua V, Gioia U, Di Carlo V, Tortorelli AF, Colombo T, Bozzoni I, et al. Identification of linc-NeD125, a novel long non coding RNA that hosts miR-125b-1 and negatively controls proliferation of human neuroblastoma cells. RNA Biol. 2015;12:1323–37.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shaham L, Binder V, Gefen N, Borkhardt A, Izraeli S. MiR-125 in normal and malignant hematopoiesis. Leukemia. 2012;26:2011–8.

    Article  CAS  PubMed  Google Scholar 

  48. Paterson MR, Kriegel AJ. MiR-146a/b: a family with shared seeds and different roots. Physiol Genomics. 2017;49:243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59–68.

    Article  CAS  PubMed  Google Scholar 

  50. Link S, Grund SE, Diederichs S. Alternative splicing affects the subcellular localization of Drosha. Nucleic Acids Res. 2016;44:5330–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dai L, Chen K, Youngren B, Kulina J, Yang A, Guo Z, et al. Cytoplasmic Drosha activity generated by alternative splicing. Nucleic Acids Res. 2016;44:10454–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Z, Chen P, Su R, Li Y, Hu C, Wang Y, et al. Overexpression and knockout of miR-126 both promote leukemogenesis. Blood. 2015;126:2005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4:1633–49.

    Article  CAS  PubMed  Google Scholar 

  54. Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Sven Diederichs and Dr Gu Shuo for DROSHA constructs, Dr Yixian Zheng for RAN constructs, and Dr Paul Taylor for DDX3X constructs and Dr Marjorie Robbins for editing the manuscript. This work was supported by R01CA205247 (to Y-HK and GM), R01CA248475 (to BZ and GM), U01CA250046 (to RCR, Y-HK and GM), R01CA201184 (to GM), Jerome Foundation (to GM) and Hoag Foundation (to GM). This work was partially supported by Natural Science Foundation of Zhejiang Province, China (LQ18H080001) and National Natural Science Foundation of China (No. 81800146). Research reported in this publication included work performed in the City of Hope Hematopoietic Tissue Biorepository (Pathology Research Services Core) supported by the National Cancer Institute of the National Institutes of Health under grant number P30CA033572. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: LXTN, BZ, Y-HK, NC, and GM. Development of methodology: LXTN, BZ, DHH, HWang, DZ, HWu, Y-LS, SR-R, and HD. Acquisition of data: LXTN, BZ, and GM. Providing intellectual inputs: BA, LYG, DP, FP, JC, LL, MK, RCR, and SK. Writing, review, and/or revision of the manuscript: LXTN and GM.

Corresponding authors

Correspondence to Le Xuan Truong Nguyen or Guido Marcucci.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.X.T., Zhang, B., Hoang, D.H. et al. Cytoplasmic DROSHA and non-canonical mechanisms of MiR-155 biogenesis in FLT3-ITD acute myeloid leukemia. Leukemia 35, 2285–2298 (2021). https://doi.org/10.1038/s41375-021-01166-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01166-9

This article is cited by

Search

Quick links