Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma gammopathies

Proteomic analysis identifies mechanism(s) of overcoming bortezomib resistance via targeting ubiquitin receptor Rpn13

Subjects

Abstract

Our prior study showed that inhibition of 19S proteasome-associated ubiquitin receptor Rpn13 can overcome bortezomib resistance in MM cells. Here, we performed proteomic analysis of Rpn13 inhibitor (RA190)-treated MM cells and identified an antioxidant enzyme superoxide dismutase (SOD1) as a mediator of Rpn13 signaling. SOD1 levels are higher in MM patient cells versus normal PBMCs; and importantly, SOD1 expression correlates with the progression of disease and shorter survival. Functional validation studies show that RA190-induced cytotoxicity in bortezomib-sensitive and -resistant MM cells is associated with decrease in SOD1 levels; conversely, forced expression of SOD1 inhibits RA190-induced cell death. Genetic knockdown and biochemical blockade of SOD1 with LCS-1 sensitizes bortezomib-resistant MM cells to bortezomib. SOD1 inhibitor LCS-1 decreases viability in MM cell lines and patient cells. LCS-1-induced cell death is associated with: (1) increase in superoxide and ROS levels; (2) activation of caspases, and p53/p21 signaling; (3) decrease in MCL-1, BCLxL, CDC2, cyclin-B1, and c-Myc; (4) ER stress response; and (5) inhibition of proteasome function. In animal model studies, LCS-1 inhibits xenografted bortezomib-resistant human MM cell growth and prolongs host survival. Our studies therefore show that targeting Rpn13 overcomes bortezomib resistance by decreasing cellular SOD1 levels, and provide the rationale for novel therapeutics targeting SOD1 to improve patient outcome in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ubiquitin Receptor Rpn13 targets Superoxide dismutase.
Fig. 2: SOD1 expression and prognostic relevance in MM.
Fig. 3: Anti-MM activity of SOD1 inhibitor LCS-1.
Fig. 4: Blockade of SOD1 triggers oxidative stress, mitochondrial UPR signaling, and proteasome inhibition.
Fig. 5: Mechanisms of LCS-1-induced MM cell death.
Fig. 6: LCS-1 inhibits xenografted human MM cell growth and prolongs host survival.

Similar content being viewed by others

References

  1. Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer. 2004;4:349–60.

    CAS  PubMed  Google Scholar 

  2. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426:895–9.

    CAS  PubMed  Google Scholar 

  3. Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ. 2005;12:1191–7.

    CAS  PubMed  Google Scholar 

  4. Chauhan D, Hideshima T, Anderson KC. Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol. 2005;45:465–76.

    CAS  PubMed  Google Scholar 

  5. Kane RC. Velcade(R): U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8:508–13.

    PubMed  Google Scholar 

  6. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of Bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–17.

    CAS  PubMed  Google Scholar 

  7. Anderson KC. Therapeutic advances in relapsed or refractory multiple myeloma. J Natl Compr Cancer Netw. 2013;11:676–9.

    CAS  Google Scholar 

  8. Richardson PG, San Miguel JF, Moreau P, Hajek R, Dimopoulos MA, Laubach JP, et al. Interpreting clinical trial data in multiple myeloma: translating findings to the real-world setting. Blood Cancer J. 2018;8. https://doi.org/10.1038/s41408-018-0141-0.

  9. Lonial S, Waller EK, Richardson PG, Jagannath S, Orlowski RZ, Giver CR, et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood. 2005;106:3777–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Song Y, Ray A, Li S, Das DS, Tai YT, Carrasco RD, et al. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma. Leukemia. 2016;30:1877–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Anchoori RK, Karanam B, Peng S, Wang JW, Tanno T, Orlowski RZ, et al. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell. 2014;24:1–28.

  12. Chen W, Hu XT, Shi QL, Zhang FBHC. Knockdown of the novel proteasome subunit Adrm1 located on the 20q13 amplicon inhibits colorectal cancer cell migration, survival and tumorigenicity. Oncol Rep. 2009;21:531–7.

    CAS  PubMed  Google Scholar 

  13. Fejzo MS, Dering J, Ginther C, Anderson L, Ramos L, Walsh C. et al. Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target. Genes Chromosom Cancer. 2008;47:873–83.

    CAS  PubMed  Google Scholar 

  14. Trader DJ, Simanski S, Kodadek T. A reversible and highly selective inhibitor of the proteasomal ubiquitin receptor Rpn13 is toxic to multiple myeloma cells. J Am Chem Soc. 2015;137:6312–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem. 2012;81:291–322.

    CAS  PubMed  Google Scholar 

  16. Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S, et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature. 2008;453:548–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu X, Nowicka U, Sridharan V, Liu F, Randles L, Hymel D, et al. Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nat Commun. 2017;8:15540.

    PubMed  PubMed Central  Google Scholar 

  18. Ray A, Song Y, Chauhan D, Anderson KC. Blockade of ubiquitin receptor Rpn13 in plasmacytoid dendritic cells triggers anti-myeloma immunity. Blood Cancer J. 2019;9:6–9.

    Google Scholar 

  19. Feng R, Oton A, Mapara MY, Anderson G, Belani C, Lentzsch S. The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol. 2007;139:385–97.

    CAS  PubMed  Google Scholar 

  20. Nerini-Molteni S, Ferrarini M, Cozza S, Caligaris-Cappio F, Sitia R. Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib. Br J Haematol. 2008;141:494–503.

    CAS  PubMed  Google Scholar 

  21. Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res. 2004;10:3839–52.

    CAS  PubMed  Google Scholar 

  22. Pei XY, Dai Y, Grant S. The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia. 2003;17:2036–45.

    CAS  PubMed  Google Scholar 

  23. Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal. 2010;13:1699–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Salem K, McCormick ML, Wendlandt E, Zhan F, Goel A. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol. 2015;4:23–33.

    CAS  PubMed  Google Scholar 

  25. Trachootham D, Lu W, Ogasawara MA, Valle NRDel, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D, et al. Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia. 2015;29:1441–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009;16:309–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chauhan D, Tian Z, Nicholson B, Kumar KGS, Zhou B, Carrasco R, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistanc. Cancer Cell. 2012;11:345–58.

  29. Chauhan D, Li G, Podar K, Hideshima T, Neri P, He D, et al. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Cancer Res. 2005;65:8350–8.

    CAS  PubMed  Google Scholar 

  30. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell. 2005;8:407–19.

    CAS  PubMed  Google Scholar 

  31. Glickman MH, Rubin DM, Fried VA, Finley D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol. 1998;18:3149–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian Z, Zhao JJ, Tai YT, Amin SB, Hu Y, Berger AJ, et al. Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood. 2012;120:3958–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Halliwell B, Gutteridge JMC. The importance of free radicals and catalytic metal ions in human diseases. Mol Asp Med. 1985;8:89–193.

    CAS  Google Scholar 

  34. Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979;39:1141–9.

    CAS  PubMed  Google Scholar 

  35. Tsang CKWA, Liu Y, Thomas J, Zhang Y, Zheng XFS. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun. 2014;5:3446.

    PubMed  PubMed Central  Google Scholar 

  36. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C. SOD1 in amyotrophic lateral sclerosis: “ambivalent” behavior connected to the disease. Int J Mol Sci. 2018;19:1–13.

    Google Scholar 

  37. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110:3281–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Somwar R, Erdjument-Bromage H, Larsson E, Shum D, Lockwood WW, Yang G, et al. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc Natl Acad Sci USA. 2011;108:16375–80.

    CAS  PubMed  Google Scholar 

  39. Gourzones C, Bellanger C, Lamure S, Gadacha OK, Paco EG De, Vincent L, et al. Antioxidant defenses confer resistance to high dose melphalan in multiple myeloma cells. Cancers. 2019;11. https://doi.org/10.3390/cancers11040439.

  40. Li X, Chen Y, Zhao J, Shi J, Wang M, Qiu S, et al. The specific inhibition of SOD1 selectively promotes apoptosis of cancer cells via regulation of the ROS signaling network. Oxid Med Cell Longev. 2019;2019. https://doi.org/10.1155/2019/9706792.

  41. Li S, Fu L, Tian T, Deng L, Li H, Xia W, et al. Disrupting SOD1 activity inhibits cell growth and enhances lipid accumulation in nasopharyngeal carcinoma. Cell Commun Signal. 2018;16:1–13.

    Google Scholar 

  42. Glasauer A, Sena LA, Diebold LP, Mazar AP, Chandel NS. Targeting SOD1 reduces experimental non-small-cell lung cancer. J Clin Investig. 2014;124:117–28.

    CAS  PubMed  Google Scholar 

  43. Soriano GP, Besse L, Li N, Kraus M, Besse A, Meeuwenoord N, et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia. 2016;30:2198–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto KI, Libermann TA, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood. 1996;87:1104–12.

    CAS  PubMed  Google Scholar 

  45. Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, et al. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012;4:1247–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chauhan D, Li G, Sattler M, Podar K, Mitsiades C, Mitsiades N, et al. Superoxide-dependent and -independent mitochondrial signaling during apoptosis in multiple myeloma cells. Oncogene. 2003;22:6296–300.

    CAS  PubMed  Google Scholar 

  47. Chauhan D, Hideshima T, Rosen S, Reed JC, Kharbanda S, Anderson KC. Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. J Biol Chem. 2001;276:24453–6.

    CAS  PubMed  Google Scholar 

  48. Chauhan D, Pandey P, Ogata A, Teoh G, Krett N, Halgren R, et al. Cytochrome c-dependent and -independent induction of apoptosis in multiple myeloma cells. J Biol Chem. 1997;272:29995–7.

    CAS  PubMed  Google Scholar 

  49. Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014;217:137–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Haynes CM, Ron D. The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci. 2010;123:3849–55.

    CAS  PubMed  Google Scholar 

  51. Livnat-Levanon N, Kevei É, Kleifeld O, Krutauz D, Segref A, Rinaldi T, et al. Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep. 2014;7:1371–80.

    CAS  PubMed  Google Scholar 

  52. Beck P, Dubiella C, Groll M. Covalent and non-covalent reversible proteasome inhibition. Biol Chem. 2012;393:1101–20.

    CAS  PubMed  Google Scholar 

  53. Wang X, Yen J, Kaiser P, Huang L. Regulation of the 26S proteasome complex during oxidative stress. Sci Signal. 2010;3:1–10.

    Google Scholar 

Download references

Acknowledgements

The grant support for this investigation was provided by Dr Miriam and Sheldon Adelson Medical Research Foundation, as well as by the National Institutes of Health Specialized Programs of Research Excellence (SPORE) grant P50100707, R01CA207237, and RO1 CA050947. KCA is an American Cancer Society Clinical Research Professor. We are thankful to Krishan Chauhan (Undergraduate Summer Intern, WIT/DFCI) for the literature research and helpful discussion on free radical-mediated signaling cascades.

Author information

Authors and Affiliations

Authors

Contributions

DC conceptualized the project, designed research, analyzed data, and wrote the paper; TD performed all experiments, and analyzed the data; YS helped in animal model studies; AR helped in coculture assays; and KCA provided clinical samples and reviewed the paper.

Corresponding authors

Correspondence to Dharminder Chauhan or Kenneth C. Anderson.

Ethics declarations

Conflict of interest

KCA is on Advisory Board of Millenium-Takeda, Gilead, Janssen, Bristol Myers Squibb, and Sanofi Aventis, and is a Scientific Founder of Oncopep and C4 Therapeutics. DC is consultant to Stemline Therapeutic, Inc., and Equity owner in C4 Therapeutics. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, T., Song, Y., Ray, A. et al. Proteomic analysis identifies mechanism(s) of overcoming bortezomib resistance via targeting ubiquitin receptor Rpn13. Leukemia 35, 550–561 (2021). https://doi.org/10.1038/s41375-020-0865-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0865-2

Search

Quick links