Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acetaminophen for the patent ductus arteriosus: has safety been adequately demonstrated?

Abstract

Patent ductus arteriosus (PDA) is the most common cardiovascular condition diagnosed in premature infants. Acetaminophen was first proposed as a potential treatment for PDA in 2011. Since that time acetaminophen use among extremely preterm neonates has increased substantially. The limited available data demonstrate that acetaminophen reduces PDA without evident hepatotoxicity. These findings have led some to suggest that acetaminophen is a safe and effective therapy for PDA closure. However, the lack of apparent hepatoxicity is predictable. Acetaminophen induced cellular injury is due to CYP2E1 derived metabolites; and hepatocyte CYP2E1 expression is low in the fetal and neonatal period. Here, we review preclinical and clinical data that support the hypothesis that the lung, which expresses high levels of CYP2E1 during fetal and early postnatal development, may be particularly susceptible to acetaminophen induced toxicity. Despite these emerging data, the true potential pulmonary risks and benefits of acetaminophen for PDA closure are largely unknown. The available clinical studies in are marked by significant weakness including low sample sizes and minimal evaluation of extremely preterm infants who are typically at highest risk of pulmonary morbidity. We propose that studies interrogating mechanisms linking developmentally regulated, cell-specific CYP2E1 expression and acetaminophen-induced toxicity as well as robust assessment of pulmonary outcomes in large trials that evaluate the safety and efficacy of acetaminophen in extremely preterm infants are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acetaminophen metabolizing pathways.
Fig. 2: Zonated pattern of hepatocyte injury after toxic acetaminophen exposure.
Fig. 3: Pdgfr-α positive cells are present throughout the developing murine lung.

Similar content being viewed by others

References

  1. Backes CH, Hill KD, Shelton EL, Slaughter JL, Lewis TR, Weisz DE, et al. Patent ductus arteriosus: a contemporary perspective for the pediatric and adult cardiac care provider. J Am Heart Assoc. 2022;11:e025784.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Semberova J, Sirc J, Miletin J, Kucera J, Berka I, Sebkova S, et al. Spontaneous closure of patent ductus arteriosus in infants ≤1500 g. Pediatrics. 2017;140:e20164258.

    PubMed  Google Scholar 

  3. Benitz WE. Committee on Fetus and Newborn, American Academy of Pediatrics. Patent ductus arteriosus in preterm infants. Pediatrics. 2016;137. https://doi.org/10.1542/peds.2015-3730.

  4. Nelson RJ, Thibeault DW, Emmanouilides GC, Lippmann M. Improving the results of ligation of patent ductus arteriosus in small preterm infants. J Thorac Cardiovasc Surg. 1976;71:169–78.

    CAS  PubMed  Google Scholar 

  5. Hammerman C, Bin-Nun A, Markovitch E, Schimmel MS, Kaplan M, Fink D. Ductal closure with paracetamol: a surprising new approach to patent ductus arteriosus treatment. Pediatrics. 2011;128:e1618–e1621.

    PubMed  Google Scholar 

  6. Manalastas M, Zaheer F, Nicoski P, Weiss MG, Amin S. Acetaminophen therapy for persistent patent ductus arteriosus. NeoReviews. 2021;22:e320–e331.

    PubMed  Google Scholar 

  7. Stark A, Smith PB, Hornik CP, Zimmerman KO, Hornik CD, Pradeep S, et al. Medication use in the neonatal intensive care unit and changes from 2010 to 2018. J Pediatr. 2022;240:66–71.e4.

    PubMed  Google Scholar 

  8. Al-Turkait A, Szatkowski L, Choonara I, Ojha S. Drug utilisation in neonatal units in England and Wales: a national cohort study. Eur J Clin Pharm. 2022;78:669–77.

    Google Scholar 

  9. Gouyon B, Martin-Mons S, Iacobelli S, Razafimahefa H, Kermorvant-Duchemin E, Brat R, et al. Characteristics of prescription in 29 Level 3 Neonatal Wards over a 2-year period (2017-8). An inventory for future research. PLOS One. 2019;14:e0222667.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liebowitz M, Kaempf J, Erdeve O, Bulbul A, Håkansson S, Lindqvist J, et al. Comparative effectiveness of drugs used to constrict the patent ductus arteriosus: a secondary analysis of the PDA-TOLERATE trial (NCT01958320). J Perinatol. 2019;39:599–607.

    PubMed  PubMed Central  Google Scholar 

  11. Dani C, Mosca F, Cresi F, Lago P, Lista G, Laforgia N, et al. Patent ductus arteriosus in preterm infants born at 23–24 weeks’ gestation: Should we pay more attention? Early Hum Dev. 2019;135:16–22.

    PubMed  Google Scholar 

  12. Mukherjee A, Jadhav V, Gupta A. Off-label use of paracetamol in managing patent ductus arteriosus across neonatal intensive care units in the UK. Arch Dis Child Fetal Neonatal Ed. 2021;106:113–4.

    PubMed  Google Scholar 

  13. Dowd LA, Wheeler BJ, Al-Sallami HS, Broadbent RS, Edmonds LK, Medlicott NJ. Paracetamol treatment for patent ductus arteriosus: practice and attitudes in Australia and New Zealand. J Matern Fetal Neonatal Med. 2019;32:3039–44.

    CAS  PubMed  Google Scholar 

  14. Jasani B, Mitra S, Shah PS. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst Rev. 2022, https://doi.org/10.1002/14651858.CD010061.pub5.

  15. Jasani B, Weisz DE, McNamara PJ. Evidence-based use of acetaminophen for hemodynamically significant ductus arteriosus in preterm infants. Semin Perinatol. 2018;42:243–52.

    CAS  PubMed  Google Scholar 

  16. Squires RH. Acute liver failure in children. Semin Liver Dis. 2008;28:153–66.

    CAS  PubMed  Google Scholar 

  17. Lee WS, McKiernan P, Kelly DA. Etiology, outcome and prognostic indicators of childhood fulminant hepatic failure in the United Kingdom. J Pediatr Gastroenterol Nutr. 2005;40:575–81.

    PubMed  Google Scholar 

  18. Squires RH, Shneider BL, Bucuvalas J, Alonso E, Sokol RJ, Narkewicz MR, et al. Acute liver failure in children: the first 348 patients in the pediatric acute liver failure study group. J Pediatr. 2006;148:652–658.e2.

    PubMed  PubMed Central  Google Scholar 

  19. Wright CJ. Acetaminophen and the developing lung: could there be lifelong consequences? J Pediatr. 2021;235:264–276.e1.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McCulley DJ, Jensen EA, Sucre JMS, McKenna S, Sherlock LG, Dobrinskikh E, et al. Racing against time: leveraging preclinical models to understand pulmonary susceptibility to perinatal acetaminophen exposures. Am J Physiol Lung Cell Mol Physiol. 2022;323:L1–L13.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pacifici GM, Allegaert K. Clinical pharmacology of paracetamol in neonates: a review. Curr Ther Res. 2015;77:24–30.

    CAS  PubMed  Google Scholar 

  22. McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013;30:2174–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramachandran A, Jaeschke H. Acetaminophen toxicity: novel insights into mechanisms and future perspectives. Gene Expr. 2018;18:19–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol. 2016;4:131–42.

    PubMed  PubMed Central  Google Scholar 

  25. Sandoval J, Orlicky DJ, Allawzi A, Butler B, Ju C, Phan CT, et al. Toxic acetaminophen exposure induces distal lung ER stress, proinflammatory signaling, and emphysematous changes in the adult murine lung. Oxid Med Cell Longev. 2019;2019:1–15.

    Google Scholar 

  26. Lee WM. Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? J Hepatol. 2017;67:1324–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson JF, Hamilton EG, Lam J, Chen H, Woodruff TJ. Differences in cytochrome p450 enzyme expression and activity in fetal and adult tissues. Placenta. 2020;100:35–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sadler NC, Nandhikonda P, Webb-Robertson B-J, Ansong C, Anderson LN, Smith JN, et al. Hepatic cytochrome p450 activity, abundance, and expression throughout human development. Drug Metab Dispos. 2016;44:984–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharm Ther. 2008;118:250–67.

    CAS  Google Scholar 

  30. Hart SN, Cui Y, Klaassen CD, Zhong X. Three patterns of cytochrome P450 gene expression during liver maturation in mice. Drug Metab Dispos. 2009;37:116–21.

    CAS  PubMed  Google Scholar 

  31. Xu S-F, Hu A-L, Xie L, Liu J-J, Wu Q, Liu J. Age-associated changes of cytochrome P450 and related phase-2 gene/proteins in livers of rats. PeerJ. 2019;7:e7429.

    PubMed  PubMed Central  Google Scholar 

  32. Green MD, Shires TK, Fischer LJ. Hepatotoxicity of acetaminophen in neonatal and young rats. I. Age-related changes in susceptibility. Toxicol Appl Pharm. 1984;74:116–24.

    CAS  Google Scholar 

  33. Hart JG, Timbrell JA. The effect of age on paracetamol hepatotoxicity in mice. Biochem Pharm. 1979;28:3015–7.

    CAS  PubMed  Google Scholar 

  34. Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol. 2019;93:3419–89.

    CAS  PubMed  Google Scholar 

  35. Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol. 2002;32:391–411.

    CAS  PubMed  Google Scholar 

  36. Hart SG, Cartun RW, Wyand DS, Khairallah EA, Cohen SD. Immunohistochemical localization of acetaminophen in target tissues of the CD-1 mouse: correspondence of covalent binding with toxicity. Fundam Appl Toxicol J Soc Toxicol. 1995;24:260–74.

    CAS  Google Scholar 

  37. Placke ME, Wyand DS, Cohen SD. Extrahepatic lesions induced by acetaminophen in the mouse. Toxicol Pathol. 1987;15:381–7.

    CAS  PubMed  Google Scholar 

  38. Jeffery EH, Haschek WM. Protection by dimethylsulfoxide against acetaminophen-induced hepatic, but not respiratory toxicity in the mouse. Toxicol Appl Pharm. 1988;93:452–61.

    CAS  Google Scholar 

  39. Gu J, Cui H, Behr M, Zhang L, Zhang Q-Y, Yang W, et al. In vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa. Mol Pharm. 2005;67:623–30.

    CAS  Google Scholar 

  40. Neff SB, Neff TA, Kunkel SL, Hogaboam CM. Alterations in cytokine/chemokine expression during organ-to-organ communication established via acetaminophen-induced toxicity. Exp Mol Pathol. 2003;75:187–93.

    CAS  PubMed  Google Scholar 

  41. Bartolone JB, Beierschmitt WP, Birge RB, Hart SG, Wyand S, Cohen SD, et al. Selective acetaminophen metabolite binding to hepatic and extrahepatic proteins: an in vivo and in vitro analysis. Toxicol Appl Pharm. 1989;99:240–9.

    CAS  Google Scholar 

  42. Chen TS, Richie JP, Lang CA. Life span profiles of glutathione and acetaminophen detoxification. Drug Metab Dispos Biol Fate Chem. 1990;18:882–7.

    CAS  PubMed  Google Scholar 

  43. Micheli L, Cerretani D, Fiaschi AI, Giorgi G, Romeo MR, Runci FM. Effect of acetaminophen on glutathione levels in rat testis and lung. Environ Health Perspect. 1994;102:63–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bulera SJ, Cohenb SD, Khairallah EA. Acetaminophen-arylated proteins are detected in hepatic subcellular fractions and numerous extra-hepatic tissues in CD-1 and C57B1/6J mice. Toxicology. 1996;109:85–99.

    CAS  PubMed  Google Scholar 

  45. Dimova S, Hoet PHM, Dinsdale D, Nemery B. Acetaminophen decreases intracellular glutathione levels and modulates cytokine production in human alveolar macrophages and type II pneumocytes in vitro. Int J Biochem Cell Biol. 2005;37:1727–37.

    CAS  PubMed  Google Scholar 

  46. Dimova S, Hoet PH, Nemery B. Paracetamol (acetaminophen) cytotoxicity in rat type II pneumocytes and alveolar macrophages in vitro. Biochem Pharm. 2000;59:1467–75.

    CAS  PubMed  Google Scholar 

  47. Nassini R, Materazzi S, Andrè E, Sartiani L, Aldini G, Trevisani M, et al. Acetaminophen, via its reactive metabolite N -acetyl- p -benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 2010;24:4904–16.

    CAS  PubMed  Google Scholar 

  48. Dobrinskikh E, Al-Juboori SI, Zarate MA, Zheng L, De Dios R, Balasubramaniyan D, et al. Pulmonary implications of acetaminophen exposures independent of hepatic toxicity. Am J Physiol Lung Cell Mol Physiol. 2021;321:L941–L953.

    PubMed  PubMed Central  Google Scholar 

  49. Breen K, Wandscheer JC, Peignoux M, Pessayre D. In situ formation of the acetaminophen metabolite covalently bound in kidney and lung. Supportive evidence provided by total hepatectomy. Biochem Pharm. 1982;31:115–6.

    CAS  PubMed  Google Scholar 

  50. Dobrinskikh E, Sherlock LG, Orlicky DJ, Zheng L, De Dios R, Balasubramaniyan D, et al. The developing murine lung is susceptible to acetaminophen toxicity. Am J Physiol Lung Cell Mol Physiol. 2021;320:L969–L978.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. LungMAP - Home. https://www.lungmap.net/. Accessed 4 Mar 2023.

  52. Xie T, Wang Y, Deng N, Huang G, Taghavifar F, Geng Y, et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 2018;22:3625–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Negretti NM, Plosa EJ, Benjamin JT, Schuler BA, Habermann AC, Jetter CS, et al. A single-cell atlas of mouse lung development. Dev Camb Engl. 2021;148:dev199512.

    CAS  Google Scholar 

  54. Boström H, Willetts K, Pekny M, Levéen P, Lindahl P, Hedstrand H, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell. 1996;85:863–73.

    PubMed  Google Scholar 

  55. Li R, Li X, Hagood J, Zhu M-S, Sun X. Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface. J Clin Invest. 2020;130:2859–71.

    CAS  PubMed  Google Scholar 

  56. Li C, Li M, Li S, Xing Y, Yang C-Y, Li A, et al. Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm. Stem Cells. 2015;33:999–1012.

    CAS  PubMed  Google Scholar 

  57. Lindahl P, Karlsson L, Hellström M, Gebre-Medhin S, Willetts K, Heath JK, et al. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Dev Camb Engl. 1997;124:3943–53.

    CAS  Google Scholar 

  58. Gouveia L, Betsholtz C, Andrae J. Expression analysis of platelet-derived growth factor receptor alpha and its ligands in the developing mouse lung. Physiol Rep. 2017;5:e13092.

    PubMed  PubMed Central  Google Scholar 

  59. Soriano P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Dev Camb Engl. 1997;124:2691–2700.

    CAS  Google Scholar 

  60. Li R, Bernau K, Sandbo N, Gu J, Preissl S, Sun X. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife. 2018;7:e36865.

    PubMed  PubMed Central  Google Scholar 

  61. Du Y, Guo M, Whitsett JA, Xu Y. ‘LungGENS’: a web-based tool for mapping single-cell gene expression in the developing lung. Thorax. 2015;70:1092–4.

    PubMed  Google Scholar 

  62. Du Y, Kitzmiller JA, Sridharan A, Perl AK, Bridges JP, Misra RS, et al. Lung Gene Expression Analysis (LGEA): an integrative web portal for comprehensive gene expression data analysis in lung development. Thorax. 2017;72:481–4.

    PubMed  Google Scholar 

  63. Du Y, Ouyang W, Kitzmiller JA, Guo M, Zhao S, Whitsett JA, et al. Lung gene expression analysis web portal version 3: lung-at-a-glance. Am J Respir Cell Mol Biol. 2021;64:146–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bandoli G, Palmsten K, Chambers C. Acetaminophen use in pregnancy: examining prevalence, timing, and indication of use in a prospective birth cohort. Paediatr Perinat Epidemiol. 2020;34:237–46.

    PubMed  Google Scholar 

  65. International Agency for Research on Cancer. Pharmaceutical drugs: views and experts opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon 17–24 Oct. 1989. Lyon: IARC; 1990.

  66. Collins E. Maternal and fetal effects of acetaminophen and salicylates in pregnancy. Obstet Gynecol. 1981;58:57S–62S.

    CAS  PubMed  Google Scholar 

  67. Niederhoff H, Zahradnik HP. Analgesics during pregnancy. Am J Med. 1983;75:117–20.

    CAS  PubMed  Google Scholar 

  68. Lubawy WC, Garrett RJ. Effects of aspirin and acetaminophen on fetal and placental growth in rats. J Pharm Sci. 1977;66:111–3.

    CAS  PubMed  Google Scholar 

  69. Lambert GH, Thorgeirsson SS. Glutathione in the developing mouse liver—I. Biochem Pharm. 1976;25:1777–81.

    CAS  PubMed  Google Scholar 

  70. Bauer AZ, Swan SH, Kriebel D, Liew Z, Taylor HS, Bornehag C-G, et al. Paracetamol use during pregnancy — a call for precautionary action. Nat Rev Endocrinol. 2021;17:757–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Statement on the use of acetaminophen for analgesia and fever in pregnancy. https://sogc.org/en/content/featured-news/Statement_on_the_use_of_acetaminophen.aspx?WebsiteKey=4d1aa07b-5fc4-4673-9721-b91ff3c0be30. Accessed 4 Mar 2023.

  72. ACOG Response to Consensus Statement on Paracetamol Use During Pregnancy | ACOG. https://www.acog.org/news/news-articles/2021/09/response-to-consensus-statement-on-paracetamol-use-during-pregnancy. Accessed 5/9/2023.

  73. Official ENTIS Position Statement: Paracetamol (acetaminophen, APAP) use in pregnancy – ENTIS. https://www.entis-org.eu/entis-news/official-entis-position-statement-paracetamol-acetaminophen-apap-use-in-pregnancy. Accessed 4 Mar 2023.

  74. Shaheen SO. Paracetamol use in pregnancy and wheezing in early childhood. Thorax. 2002;57:958–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shaheen SO, Sterne JA, Songhurst CE, Burney PG. Frequent paracetamol use and asthma in adults. Thorax. 2000;55:266–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Newson RB, Shaheen SO, Chinn S, Burney PG. Paracetamol sales and atopic disease in children and adults: an ecological analysis. Eur Respir J. 2000;16:817–23.

    CAS  PubMed  Google Scholar 

  77. Fan G, Wang B, Liu C, Li D. Prenatal paracetamol use and asthma in childhood: a systematic review and meta-analysis. Allergol Immunopathol. 2017;45:528–33.

    CAS  Google Scholar 

  78. Sakulchit T, Goldman RD. Acetaminophen use and asthma in children. Can Fam Physician Med Fam Can. 2017;63:211–3.

    Google Scholar 

  79. Singh M, Varukolu S, Chauhan A, Jaiswal N, Pradhan P, Mathew JL, et al. Paracetamol exposure and asthma: what does the evidence say? An overview of systematic reviews. Pediatr Pulmonol. 2021;56:3189–99.

    PubMed  Google Scholar 

  80. Kluckow M, Carlisle H, Broom M, Woods P, Jeffery M, Desai D, et al. A pilot randomised blinded placebo-controlled trial of paracetamol for later treatment of a patent ductus arteriosus. J Perinatol. 2019;39:102–7.

    CAS  PubMed  Google Scholar 

  81. Davidson JM, Ferguson J, Ivey E, Philip R, Weems MF, Talati AJ. A randomized trial of intravenous acetaminophen versus indomethacin for treatment of hemodynamically significant PDAs in VLBW infants. J Perinatol. 2021;41:93–99.

    CAS  PubMed  Google Scholar 

  82. Schindler T, Smyth J, Bolisetty S, Michalowski J, Mallitt K-A, Singla A, et al. Early PARacetamol (EPAR) trial: a randomized controlled trial of early paracetamol to promote closure of the ductus arteriosus in preterm infants. Neonatology. 2021;118:274–81.

    CAS  PubMed  Google Scholar 

  83. Hochwald O, Mainzer G, Borenstein-Levin L, Jubran H, Dinur G, Zucker M, et al. Adding paracetamol to ibuprofen for the treatment of patent ductus arteriosus in preterm infants: a double-blind, randomized, placebo-controlled pilot study. Am J Perinatol. 2018;35:1319–25.

    PubMed  Google Scholar 

  84. Oncel MY, Yurttutan S, Erdeve O, Uras N, Altug N, Oguz SS, et al. Oral paracetamol versus oral ibuprofen in the management of patent ductus arteriosus in preterm infants: a randomized controlled trial. J Pediatr. 2014;164:510–514.e1.

    CAS  PubMed  Google Scholar 

  85. Patel R, Sushko K, van den Anker J, Samiee-Zafarghandy S. Long-term safety of prenatal and neonatal exposure to paracetamol: a systematic review. Int J Environ Res Public Health. 2022;19:2128.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Luecke CM, Liviskie CJ, Zeller BN, Vesoulis ZA, McPherson C. Acetaminophen for patent ductus arteriosus in extremely low-birth-weight neonates. J Pediatr Pharm Ther. 2017;22:461–6.

    Google Scholar 

  87. Sehgal A, Nitzan I, Krishnamurthy MB, Pharande P, Tan K. Toward rational management of patent ductus arteriosus: ductal disease staging and first line paracetamol. J Matern Fetal Neonatal Med. 2021;34:3940–5.

    PubMed  Google Scholar 

  88. Mashally S, Nield LE, McNamara PJ, Martins FF, El-Khuffash A, Jain A, et al. Late oral acetaminophen versus immediate surgical ligation in preterm infants with persistent large patent ductus arteriosus. J Thorac Cardiovasc Surg. 2018;156:1937–44.

    CAS  PubMed  Google Scholar 

  89. Karabulut B, Paytoncu S. Efficacy and safety of oral paracetamol vs. oral ibuprofen in the treatment of symptomatic patent ductus arteriosus in premature infants. Pediatr Drugs. 2019;21:113–21.

    Google Scholar 

  90. Vaidya R, Wilson D, Paris Y, Madore L, Singh R. Use of acetaminophen for patent ductus arteriosus treatment: a single center experience. J Matern Fetal Neonatal Med. 2020;33:2723–9.

    CAS  PubMed  Google Scholar 

  91. Kimani S, Surak A, Miller M, Bhattacharya S. Use of combination therapy with acetaminophen and ibuprofen for closure of the patent ductus arteriosus in preterm neonates. Paediatr Child Health. 2021;26:e177–e183.

    PubMed  Google Scholar 

  92. Okulu E, Erdeve O, Arslan Z, Demirel N, Kaya H, Gokce IK, et al. An observational, prospective, multicenter, registry-based cohort study comparing conservative and medical management for patent ductus arteriosus. Front Pediatr. 2020;8:434.

    PubMed  PubMed Central  Google Scholar 

  93. Cakir U, Tayman C, Karacaglar NB, Beser E, Ceran B, Unsal H. Comparison of the effect of continuous and standard intermittent bolus paracetamol infusion on patent ductus arteriosus. Eur J Pediatr. 2021;180:433–40.

    CAS  PubMed  Google Scholar 

  94. Balasubramanian H, Jain V, Bhalgat P, Parikh S, Kabra N, Mohan D, et al. Low dose paracetamol for management of patent ductus arteriosus in very preterm infants: a randomised non-inferiority trial. Arch Dis Child Fetal Neonatal Ed. 2023;108:130–5.

    PubMed  Google Scholar 

  95. Gover A, Levy PT, Rotschild A, Golzman M, Molad M, Lavie-Nevo K, et al. Oral versus intravenous paracetamol for patent ductus arteriosus closure in preterm infants. Pediatr Res. 2022;92:1146–52.

    CAS  PubMed  Google Scholar 

  96. Murphy C, Bussmann N, Staunton D, McCallion N, Franklin O, EL-Khuffash A. The effect of patent ductus arteriosus treatment with paracetamol on pulmonary vascular resistance. J Perinatol. 2022;42:1697–8.

    PubMed  PubMed Central  Google Scholar 

  97. Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, et al. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017;12:674–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Berkelhamer SK, Farrow KN. Developmental regulation of antioxidant enzymes and their impact on neonatal lung disease. Antioxid Redox Signal. 2014;21:1837–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Flint RB, Roofthooft DW, van Rongen A, van Lingen RA, van den Anker JN, van Dijk M, et al. Exposure to acetaminophen and all its metabolites upon 10, 15, and 20 mg/kg intravenous acetaminophen in very-preterm infants. Pediatr Res. 2017;82:678–84.

    CAS  PubMed  Google Scholar 

  100. Abadier M, Wong A, Stathakis P, Singsit J, Pillay M, Graudins A. A case of accidental neonatal paracetamol overdose with prolonged half-life and measured metabolites. Clin Toxicol. 2019;57:1154–6.

    CAS  Google Scholar 

  101. Chiewa A, Buckleyb N, Paoc LT, Robertsd D. Pharmacokinetics of acetaminophen and metabolites after accidental acute overdose in a neonate. North American Congress of Clinical Toxicology (NACCT) Abstracts 2018. Clin Toxicol. 2018;56:951–2.

    Google Scholar 

  102. Juujärvi S, Saarela T, Pokka T, Hallman M, Aikio O. Intravenous paracetamol for neonates: long-term diseases not escalated during 5 years of follow-up. Arch Dis Child Fetal Neonatal Ed. 2021;106:178–83.

    PubMed  Google Scholar 

  103. Prophylactic Treatment of the Ductus Arteriosus in Preterm Infants by Acetaminophen - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04459117. Accessed 4 Mar 2023.

  104. Canadian National PDA Treatment Study - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04347720. Accessed 4 Mar 2023.

Download references

Funding

This work was supported by NIH grants R01HL132941 and R01HD107700 to CJW, NIH grant R01HL146859 to DJM.

Author information

Authors and Affiliations

Authors

Contributions

CJW and EAJ responsible for the initial draft. CJW, EAJ, DJM and SM edited the draft. All authors agree with submission of final version.

Corresponding author

Correspondence to Clyde J. Wright.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, C.J., McCulley, D.J., Mitra, S. et al. Acetaminophen for the patent ductus arteriosus: has safety been adequately demonstrated?. J Perinatol 43, 1230–1237 (2023). https://doi.org/10.1038/s41372-023-01697-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01697-2

Search

Quick links