Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Epigenetics

Deficiency of Irx5 protects mice from obesity and associated metabolic abnormalities

Abstract

Objective

Obesity, a leading cause of several metabolic abnormalities, is mainly caused by imbalanced energy homeostasis. IRX3 and IRX5 have been suggested as genetic determinants of obesity in connection with the intronic variants of the FTO gene, the strongest genetic risk factor of polygenic obesity in humans. Although the causal effects of Irx3 and its cooperation with Irx5 in obesity and associated metabolic abnormalities have been demonstrated in vivo, the function of Irx5 in energy homeostasis remains unclear. Here we aim to decipher the actions of Irx5 in the regulation of obesity and metabolic abnormalities.

Methods

We employed a mouse model homozygous for an Irx5-knockout (Irx5KO) allele and determined its metabolic phenotype in the presence or absence of a high-fat diet challenge. To investigate the function of Irx5 in the regulation of energy homeostasis, adipose thermogenesis and hypothalamic leptin response were assessed, and single-cell RNA sequencing (scRNA-seq) in the hypothalamic arcuate-median eminence (ARC-ME) was conducted.

Results

Irx5KO mice were leaner and resistant to diet-induced obesity as well as associated metabolic abnormalities, primarily through loss of adiposity. Assessments of energy expenditure and long-term dietary intake revealed that an increase in basal metabolic rate with adipose thermogenesis and a reduction of food intake with improved hypothalamic leptin response in Irx5KO mice may contribute to the anti-obesity effects. Utilizing scRNA-seq and marker gene analyses, we demonstrated the number of ARC-ME neurons was elevated in Irx5KO mice, suggesting a direct role for Irx5 in hypothalamic feeding control.

Conclusions

Our study demonstrates that Irx5 is a genetic factor determining body mass/composition and obesity and regulates both energy expenditure and intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lean and anti-obesity phenotype of Irx5 knockout mice.
Fig. 2: Improved metabolic health in Irx5KO mice.
Fig. 3: Increased energy expenditure with adipose thermogenesis in Irx5KO mice.
Fig. 4: Suppressed energy intake with enhanced hypothalamic leptin response in Irx5KO mice.
Fig. 5: Elevated number of neurons in the hypothalamic ARC-ME of Irx5KO mice.
Fig. 6: Schematic model depicting that Irx5 deficiency protects mice from obesity and associated metabolic abnormalities.

Similar content being viewed by others

Data availability

The sequencing data have been deposited in the GEO under accession code GSE201736.

References

  1. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Primers. 2017;3:17034.

    Article  PubMed  Google Scholar 

  2. Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep. 2015;4:363–70.

    Article  PubMed  Google Scholar 

  3. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. 2015;161:119–32.

    Article  PubMed  Google Scholar 

  4. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJ, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol. 2012;3:29.

    Article  Google Scholar 

  5. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359:2558–66.

    Article  CAS  PubMed  Google Scholar 

  6. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dina C, Meyre D, Gallina S, Durand E, Korner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–6.

    Article  CAS  PubMed  Google Scholar 

  8. Speakman JR, Rance KA, Johnstone AM. Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity. 2008;16:1961–5.

    Article  CAS  PubMed  Google Scholar 

  9. Tanofsky-Kraff M, Han JC, Anandalingam K, Shomaker LB, Columbo KM, Wolkoff LE, et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr. 2009;90:1483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sobreira DR, Joslin AC, Zhang Q, Williamson I, Hansen GT, Farris KM, et al. Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and IRX5. Science. 2021;372:1085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laber S, Forcisi S, Bentley L, Petzold J, Moritz F, Smirnov KS, et al. Linking the FTO obesity rs1421085 variant circuitry to cellular, metabolic, and organismal phenotypes in vivo. Sci Adv. 2021;7:eabg0108.

  12. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Son JE, Dou Z, Kim KH, Wanggou S, Cha VSB, Mo R, et al. Irx3 and Irx5 in Ins2-Cre(+) cells regulate hypothalamic postnatal neurogenesis and leptin response. Nat Metab. 2021;3:701–13.

    Article  CAS  PubMed  Google Scholar 

  15. Son JE, Dou Z, Wanggou S, Chan J, Mo R, Li X, et al. Ectopic expression of Irx3 and Irx5 in the paraventricular nucleus of the hypothalamus contributes to defects in Sim1 haploinsufficiency. Sci Adv. 2021;7:eabh4503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bjune JI, Haugen C, Gudbrandsen O, Nordbo OP, Nielsen HJ, Vage V, et al. IRX5 regulates adipocyte amyloid precursor protein and mitochondrial respiration in obesity. Int J Obes. 2018;43:2151–62.

  17. Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, et al. The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell. 2005;123:347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nie Y, Gavin TP, Kuang S. Measurement of Resting Energy Metabolism in Mice Using Oxymax Open Circuit Indirect Calorimeter. Bio Protoc. 2015;5:e1602.

  19. Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci. 2017;20:484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  22. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen DR, Cheng CW, Cheng SH, Hui CC. Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech Dev. 2000;91:317–21.

    Article  CAS  PubMed  Google Scholar 

  24. Hui CC, Joyner AL. A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet. 1993;3:241–6.

    Article  CAS  PubMed  Google Scholar 

  25. Jandura A, Hu J, Wilk R, Krause HM. High-resolution fluorescent in situ hybridization in drosophila embryos and tissues using tyramide signal amplification. J Vis Exp. 2017;128:56281.

  26. Muller TD, Klingenspor M, Tschop MH. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat Metab. 2021;3:1134–6.

    Article  PubMed  Google Scholar 

  27. Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, et al. A guide to analysis of mouse energy metabolism. Nat Methods. 2011;9:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang Y, Osorio Mendoza J, Li M, Jin Z, Li B, Wu Y, et al. Impact of graded maternal dietary fat content on offspring susceptibility to high-fat diet in mice. Obesity. 2021;29:2055–67.

    Article  CAS  PubMed  Google Scholar 

  29. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104:531–43.

    Article  CAS  PubMed  Google Scholar 

  30. Timper K, Bruning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017;10:679–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab. 2019;1:754–64.

    Article  CAS  PubMed  Google Scholar 

  32. Dou Z, Son JE, Hui CC. Irx3 and Irx5— novel regulatory factors of postnatal hypothalamic neurogenesis. Front Neurosci. 2021;15:763856.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Allison MB, Myers MG Jr. 20 years of leptin: connecting leptin signaling to biological function. J Endocrinol. 2014;223:T25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan Z, Kong M, Wen S, Tsang KY, Niu B, Hartmann C, et al. IRX3 and IRX5 inhibit adipogenic differentiation of hypertrophic chondrocytes and promote osteogenesis. J Bone Miner Res. 2020;35:2444–57.

    Article  CAS  PubMed  Google Scholar 

  35. Gaborit N, Sakuma R, Wylie JN, Kim KH, Zhang SS, Hui CC, et al. Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology. Development. 2012;139:4007–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cain CJ, Gaborit N, Lwin W, Barruet E, Ho S, Bonnard C, et al. Loss of Iroquois homeobox transcription factors 3 and 5 in osteoblasts disrupts cranial mineralization. Bone Rep. 2016;5:86–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yao J, Wu D, Zhang C, Yan T, Zhao Y, Shen H, et al. Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation. Nat Immunol. 2021;22:1268–79.

  38. Kim KH, Rosen A, Bruneau BG, Hui CC, Backx PH. Iroquois homeodomain transcription factors in heart development and function. Circ Res. 2012;110:1513–24.

    Article  CAS  PubMed  Google Scholar 

  39. Fu A, Oberholtzer SM, Bagheri-Fam S, Rastetter RH, Holdreith C, Caceres VL, et al. Dynamic expression patterns of Irx3 and Irx5 during germline nest breakdown and primordial follicle formation promote follicle survival in mouse ovaries. PLoS Genet. 2018;14:e1007488.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ellacott KL, Morton GJ, Woods SC, Tso P, Schwartz MW. Assessment of feeding behavior in laboratory mice. Cell Metab. 2010;12:10–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Speakman JR. The ‘Fat Mass and Obesity Related’ (FTO) gene: Mechanisms of impact on obesity and energy balance. Curr Obes Rep. 2015;4:73–91.

    Article  PubMed  Google Scholar 

  42. Seeley RJ, MacDougald OA. Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nat Metab. 2021;3:443–5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ganeshan K, Chawla A. Warming the mouse to model human diseases. Nat Rev Endocrinol. 2017;13:458–65.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li M, Speakman JR. Setting ambient temperature conditions to optimize translation of molecular work from the mouse to human: the “Goldilocks Solution”. Methods Mol Biol. 2022;2448:235–50.

    Article  PubMed  Google Scholar 

  45. Keijer J, Li M, Speakman JR. What is the best housing temperature to translate mouse experiments to humans? Mol Metab. 2019;25:168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fischer AW, Cannon B, Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: An experimental study. Mol Metab. 2018;7:161–70.

    Article  CAS  PubMed  Google Scholar 

  47. Speakman JR, Keijer J. Not so nuanced: Reply to the comments of Gaskill and Garner on ‘Not so hot: Optimal housing temperatures for mice to mimic the environment of humans’. Mol Metab. 2014;3:337.

    Article  CAS  PubMed  Google Scholar 

  48. Gaskill BN, Garner JP. Letter-to-the-editor on “Not so hot: Optimal housing temperatures for mice to mimic the thermal environment of humans”. Mol Metab. 2014;3:335–6.

    Article  CAS  PubMed  Google Scholar 

  49. Speakman JR, Keijer J. Not so hot: Optimal housing temperatures for mice to mimic the thermal environment of humans. Mol Metab. 2012;2:5–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sherwood RI, Chen TY, Melton DA. Transcriptional dynamics of endodermal organ formation. Dev Dyn. 2009;238:29–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28:1248–50.

    Article  CAS  PubMed  Google Scholar 

  52. Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  Google Scholar 

  53. Kim KH, Oh Y, Liu J, Dababneh S, Xia Y, Kim RY, et al. Irx5 and transient outward K(+) currents contribute to transmural contractile heterogeneities in the mouse ventricle. Am J Physiol Heart Circ Physiol. 2022;322:H725–H741.

    Article  CAS  PubMed  Google Scholar 

  54. Jimenez-Chillaron JC, Hernandez-Valencia M, Lightner A, Faucette RR, Reamer C, Przybyla R, et al. Reductions in caloric intake and early postnatal growth prevent glucose intolerance and obesity associated with low birthweight. Diabetologia. 2006;49:1974–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the Canadian Institutes of Health Research (PJT-178147) and the Canada Research Chairs program to CCH. JES was supported by a post-doctoral fellowship award from Diabetes Canada. JES was awarded a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A3A03012237). KHK was supported by the Canadian Institutes of Health Research (PJT-173281) and the National New Investigator Award from the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Contributions

JES, KHK, and CCH conceived and designed the study. JES, ZD, and KHK performed the experiments. JES, KHK, and CCH wrote the manuscript.

Corresponding authors

Correspondence to Kyoung-Han Kim or Chi-Chung Hui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J.E., Dou, Z., Kim, KH. et al. Deficiency of Irx5 protects mice from obesity and associated metabolic abnormalities. Int J Obes 46, 2029–2039 (2022). https://doi.org/10.1038/s41366-022-01221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01221-0

Search

Quick links