Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Longitudinal associations of pre-pregnancy BMI and gestational weight gain with maternal urinary metabolites: an NYU CHES study

Abstract

Background/Objectives

Excessive gestational weight gain (GWG) and pre-pregnancy obesity affect a significant portion of the US pregnant population and are linked with negative maternal and child health outcomes. The objective of this study was to explore associations of pre-pregnancy body mass index (pBMI) and GWG with longitudinally measured maternal urinary metabolites throughout pregnancy.

Subjects/Methods

Among 652 participants in the New York University Children’s Health and Environment Study, a longitudinal pregnancy cohort, targeted metabolomics were measured in serially collected urine samples throughout pregnancy. Metabolites were measured at median 10 (T1), 21 (T2), and 29 (T3) weeks gestation using the Biocrates AbsoluteIDQ® p180 Urine Extension kit. Acylcarnitine, amino acid, biogenic amine, phosphatidylcholine, lysophosphatidylcholine, sphingolipid, and sugar levels were quantified. Pregnant people 18 years or older, without type 1 or 2 diabetes and with singleton live births and valid pBMI and metabolomics data were included. GWG and pBMI were calculated using weight and height data obtained from electronic health records. Linear mixed effects models with interactions with time were fit to determine the gestational age-specific associations of categorical pBMI and continuous interval-specific GWG with urinary metabolites. All analyses were corrected for false discovery rate.

Results

Participants with obesity had lower long-chain acylcarnitine levels throughout pregnancy and lower phosphatidylcholine and glucogenic amino acids and higher phenylethylamine concentrations in T2 and T3 compared with participants with normal/underweight pBMI. GWG was associated with taurine in T2 and T3 and C5 acylcarnitine species, C5:1, C5-DC, and C5-M-DC, in T2.

Conclusions

pBMI and GWG were associated with the metabolic environment of pregnant individuals, particularly in relation to mid-pregnancy. These results highlight the importance of both preconception and prenatal maternal health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Driscoll A, Gregory E. Increases in prepregnancy obesity: United States, 2016–2019. Centers for Disease Control and Prevention (CDC); 2020 November 2020. Report No.: 392 Contract No.: 392.

  2. Power ML, Gaspar-Oishi M, Gibson K, Kelly EW, Lott ML, Mackeen AD, et al. A survey of women and their providers regarding gestational weight gain. J of women’s health. 2019;28:1399-406.

  3. Sun Y, Shen Z, Zhan Y, Wang Y, Ma S, Zhang S, et al. Effects of pre-pregnancy body mass index and gestational weight gain on maternal and infant complications. BMC pregnancy and childbirth. 2020;20:390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu P, Xu L, Wang Y, Zhang Y, Du Y, Sun Y, et al. Association between perinatal outcomes and maternal pre-pregnancy body mass index. Obesity reviews: an official journal of the International Association for the Study of Obesity. 2016;17:1091–102.

    Article  CAS  Google Scholar 

  5. Kominiarek MA, Saade G, Mele L, Bailit J, Reddy UM, Wapner RJ, et al. Association between gestational weight gain and perinatal outcomes. Obstetrics and gynecology. 2018;132:875–81.

    Article  PubMed  Google Scholar 

  6. Mamun AA, Kinarivala M, O’Callaghan MJ, Williams GM, Najman JM, Callaway LK. Associations of excess weight gain during pregnancy with long-term maternal overweight and obesity: evidence from 21 y postpartum follow-up. Am J Clin Nutr. 2010;91:1336–41.

    Article  CAS  PubMed  Google Scholar 

  7. Meyer DM, Stecher L, Brei C, Hauner H. Mid-pregnancy weight gain is associated with offspring adiposity outcomes in early childhood. Pediatr Res. 2021;90:390–6.

    Article  CAS  PubMed  Google Scholar 

  8. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One. 2013;8:e61627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Endres LK, Straub H, McKinney C, Plunkett B, Minkovitz CS, Schetter CD, et al. Postpartum weight retention risk factors and relationship to obesity at 1 year. Obstetrics and gynecology. 2015;125:144–52.

    Article  PubMed  Google Scholar 

  10. Rangel-Huerta OD, Pastor-Villaescusa B, Gil A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics. 2019;15:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Scassellati C, Bonvicini C, Faraone SV, Gennarelli M. Biomarkers and attention-deficit/hyperactivity disorder: a systematic review and meta-analyses. Journal of the American Academy of Child and Adolescent Psychiatry. 2012;51:1003–19. e20.

    Article  PubMed  Google Scholar 

  12. Hellmuth C, Lindsay KL, Uhl O, Buss C, Wadhwa PD, Koletzko B, et al. Association of maternal prepregnancy BMI with metabolomic profile across gestation. International journal of obesity. 2017;41:159–169.

    Article  CAS  PubMed  Google Scholar 

  13. Mitro SD, Wu J, Rahman ML, Cao Y, Zhu Y, Chen Z. et al. Longitudinal plasma metabolomics profile in pregnancy-a study in an ethnically diverse U.S. pregnancy cohort. Nutrients. 2021;13:3080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ryckman KK, Donovan BM, Fleener DK, Bedell B, Borowski KS. Pregnancy-related changes of amino acid and acylcarnitine concentrations: the impact of obesity. AJP reports. 2016;6:e329–e36.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Handelman SK, Romero R, Tarca AL, Pacora P, Ingram B, Maymon E, et al. The plasma metabolome of women in early pregnancy differs from that of non-pregnant women. PLOS ONE. 2019;14:e0224682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shearer J, Klein MS, Vogel HJ, Mohammad S, Bainbridge S, Adamo KB. Maternal and cord blood metabolite associations with gestational weight gain and pregnancy health outcomes. J Proteome Res. 2021;20:1630–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cinelli G, Fabrizi M, Ravà L, Ciofi Degli Atti M, Vernocchi P, Vallone C, et al. Influence of maternal obesity and gestational weight gain on maternal and foetal lipid profile. Nutrients. 2016;8:368.

    Article  PubMed Central  CAS  Google Scholar 

  18. Vidakovic AJ, Jaddoe VWV, Gishti O, Felix JF, Williams MA, Hofman A, et al. Body mass index, gestational weight gain and fatty acid concentrations during pregnancy: the Generation R Study. European journal of epidemiology. 2015;30:1175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scott HD, Buchan M, Chadwick C, Field CJ, Letourneau N, Montina T, et al. Metabolic dysfunction in pregnancy: fingerprinting the maternal metabolome using proton nuclear magnetic resonance spectroscopy. Endocrinol Diabetes Metab. 2020;4:e00201–e.

    PubMed  PubMed Central  Google Scholar 

  20. Lindsay KL, Hellmuth C, Uhl O, Buss C, Wadhwa PD, Koletzko B, et al. Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PloS one. 2015;10:e0145794–e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Trasande L, Ghassabian A, Kahn LG, Jacobson MH, Afanasyeva Y, Liu M, et al. The NYU children’s health and environment study. European journal of epidemiology. 2020;35:305–20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. About Adult BMI: Centers for Disease Control and Prevention; [updated June 30, 2020. Available from: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html.

  23. Catalano PM. Trying to understand gestational diabetes. Diabet Med. 2014;31:273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walejko JM, Chelliah A, Keller-Wood M, Wasserfall C, Atkinson M, Gregg A, et al. Diabetes leads to alterations in normal metabolic transitions of pregnancy as revealed by time-course. Metabolomics. 2020;10:350.

    CAS  Google Scholar 

  25. Graça G, Duarte IF, Barros AS, Goodfellow BJ, Diaz SO, Pinto J, et al. Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. J Proteome Res. 2010;9:6016–24.

    Article  PubMed  CAS  Google Scholar 

  26. Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes care. 2016;39:833–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Messana I, Forni F, Ferrari F, Rossi C, Giardina B, Zuppi C. Proton nuclear magnetic resonance spectral profiles of urine in type II diabetic patients. Clinical chemistry. 1998;44:1529–34.

    Article  CAS  PubMed  Google Scholar 

  28. Bentley-Lewis R, Huynh J, Xiong G, Lee H, Wenger J, Clish C, et al. Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia. 2015;58:1329–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pietzner M, Kaul A, Henning A-K, Kastenmüller G, Artati A, Lerch MM, et al. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. BMC Medicine. 2017;15:210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pantham P, Aye ILMH, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36:709–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Villarreal-Pérez JZ, Villarreal-Martínez JZ, Lavalle-González FJ, Torres-Sepúlveda MdR, Ruiz-Herrera C, Cerda-Flores RM, et al. Plasma and urine metabolic profiles are reflective of altered beta-oxidation in non-diabetic obese subjects and patients with type 2 diabetes mellitus. Diabetology & Metabolic Syndrome. 2014;6:129.

    Article  CAS  Google Scholar 

  32. Mihalik SJ, Goodpaster BH, Kelley DE, Chace DH, Vockley J, Toledo FGS, et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity (Silver Spring). 2010;18:1695–700.

    Article  CAS  Google Scholar 

  33. Mai M, Tönjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB. Serum levels of acylcarnitines are altered in prediabetic conditions. PLOS ONE. 2013;8:e82459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bene J, Márton M, Mohás M, Bagosi Z, Bujtor Z, Oroszlán T, et al. Similarities in serum acylcarnitine patterns in Type 1 and Type 2 Diabetes Mellitus and in metabolic syndrome. Annals of Nutrition and Metabolism. 2013;62:80–5.

    Article  CAS  PubMed  Google Scholar 

  35. Cho K, Moon JS, Kang JH, Jang HB, Lee HJ, Park SI, et al. Combined untargeted and targeted metabolomic profiling reveals urinary biomarkers for discriminating obese from normal-weight adolescents. Pediatric obesity. 2017;12:93–101.

    Article  CAS  PubMed  Google Scholar 

  36. Wallace M, Morris C, O’Grada CM, Ryan M, Dillon ET, Coleman E, et al. Relationship between the lipidome, inflammatory markers and insulin resistance. Molecular BioSystems. 2014;10:1586–95.

    Article  CAS  PubMed  Google Scholar 

  37. Miranda J, Simões RV, Paules C, Cañueto D, Pardo-Cea MA, García-Martín ML, et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Scientific Reports. 2018;8:13614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Robinson O, Keski-Rahkonen P, Chatzi L, Kogevinas M, Nawrot T, Pizzi C, et al. Cord blood metabolic signatures of birth weight: a population-based study. J Proteome Res. 2018;17:1235–47.

    Article  CAS  PubMed  Google Scholar 

  39. Lewandowska M. Maternal obesity and risk of low birth weight, fetal growth restriction, and macrosomia: multiple analyses. Nutrients. 2021;13:1213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Suhre K, Meisinger C, Döring A, Altmaier E, Belcredi P, Gieger C, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLOS ONE. 2010;5:e13953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Semba RD, Gonzalez-Freire M, Moaddel R, Sun K, Fabbri E, Zhang P, et al. Altered plasma amino acids and lipids associated with abnormal glucose metabolism and insulin resistance in older adults. J Clin Endocrinol Metab. 2018;103:3331–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Denno KM, Sadler TW. Phenylalanine and its metabolites induce embryopathies in mouse embryos in culture. Teratology. 1990;42:565–70.

    Article  CAS  PubMed  Google Scholar 

  43. Xie Z, Miller GM. Beta-phenylethylamine alters monoamine transporter function via trace amine-associated receptor 1: implication for modulatory roles of trace amines in brain. The Journal of pharmacology and experimental therapeutics. 2008;325:617–28.

    Article  CAS  PubMed  Google Scholar 

  44. Molyneaux E, Poston L, Ashurst-Williams S, Howard LM. Obesity and mental disorders during pregnancy and postpartum: a systematic review and meta-analysis. Obstetrics and gynecology. 2014;123:857–67.

    Article  PubMed  Google Scholar 

  45. Li L, Lagerberg T, Chang Z, Cortese S, Rosenqvist MA, Almqvist C, et al. Maternal pre-pregnancy overweight/obesity and the risk of attention-deficit/hyperactivity disorder in offspring: a systematic review, meta-analysis and quasi-experimental family-based study. International Journal of Epidemiology. 2020;49:857–75.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moises HW, Waldmeier P, Beckmann H. Urinary phenylethylamine correlates positively with hypomania, and negatively with depression, paranoia, and social introversion on the MMPI. European archives of psychiatry and neurological sciences. 1986;236:83–7.

    Article  CAS  PubMed  Google Scholar 

  47. Walsh JM, Wallace M, Brennan L, McAuliffe FM. Early pregnancy maternal urinary metabolomic profile and later insulin resistance and fetal adiposity. The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2015;28:1697–700.

    Article  Google Scholar 

  48. Cetin I, Corbetta C, Sereni LP, Marconi AM, Bozzetti P, Pardi G, et al. Umbilical amino acid concentrations in normal and growth-retarded fetuses sampled in utero by cordocentesis. American journal of obstetrics and gynecology. 1990;162:253–61.

    Article  CAS  PubMed  Google Scholar 

  49. Holm MB, Kristiansen O, Holme AM, Bastani NE, Horne H, Blomhoff R, et al. Placental release of taurine to both the maternal and fetal circulations in human term pregnancies. Amino Acids. 2018;50:1205–14.

    Article  CAS  PubMed  Google Scholar 

  50. Gaull G, Sturman JA, Räihä NC. Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatric research. 1972;6:538–47.

    Article  CAS  PubMed  Google Scholar 

  51. Beken S, Abali S, Yildirim Saral N, Guner B, Dinc T, Albayrak E, et al. Early postnatal metabolic profile in neonates with different birth weight status: a pilot study. Front Pediatr. 2021;9:646860.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sánchez-Pintos P, de Castro M-J, Roca I, Rite S, López M, Couce M-L. Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Scientific Reports. 2017;7:16267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE. et al. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8:52–61.

    Article  CAS  PubMed  Google Scholar 

  55. Sandler V, Reisetter AC, Bain JR, Muehlbauer MJ, Nodzenski M, Stevens RD, et al. Associations of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia. 2017;60:518–30.

    Article  CAS  PubMed  Google Scholar 

  56. Yamashita H, Yasuhi I, Fukuda M, Kugishima Y, Yamauchi Y, Kuzume A, et al. The association between maternal insulin resistance in mid-pregnancy and neonatal birthweight in uncomplicated pregnancies. Endocrine journal. 2014;61:1019–24.

    Article  CAS  PubMed  Google Scholar 

  57. Council NR. Weight gain during pregnancy: reexamining the guidelines. 2010.

  58. O'Brien KM, Upson K, Cook NR, Weinberg CR. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect. 2016;124:220–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lowe WL, Bain JR, Nodzenski M, Reisetter AC, Muehlbauer MJ, Stevens RD, et al. Maternal BMI and Glycemia Impact the Fetal Metabolome. Diabetes care. 2017;40:902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mierzchała-Pasierb M, Lipińska-Gediga M, Fleszar MG, Lewandowski Ł, Serek P, Płaczkowska S, et al. An analysis of urine and serum amino acids in critically ill patients upon admission by means of targeted LC–MS/MS: a preliminary study. Scientific Reports. 2021;11:19977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

NYU CHES was supported by institutional funds of NYU Grossman School of Medicine as well as the NIH Office of the Director (UG3/UH3OD023305). In addition, the National Institute of Environmental Health Sciences grant number R01ES032808 and National Institute of Environmental Health Sciences Award Number K99ES030403 supported this work. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

SEL contributed to the conceptualization and methodology of this research as well as the data cleaning, formal analysis, and original manuscript draft. MHJ contributed to the conceptualization, methodology, supervision, and original manuscript draft. YW and ML contributed to the methodology of the research. YA contributed to the data cleaning. SJS, SM, and DRK processed and analyzed the metabolomics data and contributed to the interpretation of results. SGB and SSM contributed to the interpretations of results. LGK contributed to the conceptualization and methodology of this research. LT contributed to the conceptualization, methodology, and supervision of this research as well as providing the funding. All authors provided feedback on and approval of the final manuscript.

Corresponding author

Correspondence to Sara E. Long.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, S.E., Jacobson, M.H., Wang, Y. et al. Longitudinal associations of pre-pregnancy BMI and gestational weight gain with maternal urinary metabolites: an NYU CHES study. Int J Obes 46, 1332–1340 (2022). https://doi.org/10.1038/s41366-022-01116-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01116-0

Search

Quick links