Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bariatric Surgery

Cortisol/DHEA ratio in morbidly obese patients before and after bariatric surgery: Relation to metabolic parameters and cardiovascular performance

Abstract

Introduction

Bariatric surgery (BS) is the most effective therapy for morbid obesity. Cortisol and DHEA are steroid hormones with opposing effects, thus using Cortisol/DHEA ratio (C/D) rather than the use of either hormone alone has been found to predict health outcomes more reliably. It was interesting to study C/D as an indicator of favorable metabolic and cardiovascular outcomes after BS.

Objective

To assess C/D in morbidly obese patients before and after BS in relation to metabolic parameters and cardiovascular performance.

Patients and methods

Forty morbidly obese patients were followed prospectively for 1 year after BS. Fasting blood glucose (FBG), fasting insulin (FI), C/D, lipid profile, high-sensitive CRP (hs-CRP), and echocardiography were done before BS and at 3 months and 1 year post BS.

Results

A total of 40 morbidly obese patients undergone sleeve gastrectomy. Blood pressure, FBG, FI, hs-CRP, C/D were significantly decreased after BS (p < 0.001). At 1 year post BS; significant reduction in left ventricular posterior wall thickness (LVPW) (p < 0.001), left ventricular mass (LVM) (p = 0.003), relative wall thickness (RWT) (p < 0.001) with a significant improvement in early diastolic velocity (E) (p < 0.001), early diastolic velocity/late diastolic velocity (E/A) (p = 0.01). After BS; C/D significantly positively correlated with FBG (p = 0.019), hs-CRP (p = 0.008), interventricular septum thickness (IVS) (p = 0.028), LVPW (p = 0.028), relative wall thickness (RWT) (p = 0.022), early diastolic velocity /early diastolic velocity (E′) measured by pulsed tissue Doppler imaging (E/E′) (p = 0.001), and significantly negatively correlated with E′ (p = 0.032). C/D was the single significant independent variable affecting E′ and E/E′ post BS.

Conclusion

C/D can be used as a surrogate marker of the improved FBG and the resolution of inflammation post BS. C/D is an independent predictor of diastolic function improvement post BS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison between BMI values before and after BS.
Fig. 2: Comparison between blood pressure values before and after bariatric surgery.
Fig. 3: Comparative box plot analyzing changes in Cortisol/DHEA ratio before and after bariatric surgery.
Fig. 4: Correlation between Cortisol/DHEA ratio and diastolic parameters at 3 months and 1 year post BS.

Similar content being viewed by others

References

  1. Endalifer ML, Diress G. Epidemiology, predisposing factors, biomarkers, and prevention mechanism of obesity: a systematic review. J Obes. 2020;2020:6134362.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Resende JH, da Veiga Jardim MD, de Andrade Irineu BT, Gontijo LR, Cruvinel LR, de Sousa Neto ZA, et al. Morbid obesity: a review on the reasons for impediments to physical exercises and social activities. Modern Plastic Surgery. 2020;10:93–100.

    Article  Google Scholar 

  3. Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab. 2020;17:88.

    Article  Google Scholar 

  4. Aoki K, Terauchi Y. Effect of dehydroepiandrosterone (DHEA) on diabetes mellitus and obesity. Vitam Horm. 2018;108:355–65.

    Article  CAS  PubMed  Google Scholar 

  5. Hu Y, Wan P, An X, Jiang G. Impact of dehydroepiandrosterone (DHEA) supplementation on testosterone concentrations and BMI in elderly women: a meta-analysis of randomized controlled trials. Complement Ther Med. 2021;56:102620.

    Article  PubMed  Google Scholar 

  6. Karbowska J, Kochan Z. Effects of DHEA on metabolic and endocrine functions of adipose tissue. Horm Mol Biol Clin Investig. 2013;14:65–74.

    CAS  PubMed  Google Scholar 

  7. Yokokawa T, Sato K, Narusawa R, Kido K, Mori R, Iwanaka N, et al. Dehydroepiandrosterone activates 5’-adenosine monophosphate-activated protein kinase and suppresses lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Biochem Biophys Res Commun. 2020;528:612–19.

    Article  CAS  PubMed  Google Scholar 

  8. Phillips AC, Carroll D, Gale CR, Lord JM, Arlt W, Batty GD. Cortisol, DHEAS, their ratio and the metabolic syndrome: evidence from the Vietnam Experience Study. Eur J Endocrinol. 2010;162:919–23.

    Article  CAS  PubMed  Google Scholar 

  9. Ji E, Weickert CS, Purves-Tyson T, White C, Handelsman DJ, Desai R, et al. Cortisol-dehydroepiandrosterone ratios are inversely associated with hippocampal and prefrontal brain volume in schizophrenia. Psychoneuroendocrinology. 2021;123:104916.

    Article  CAS  PubMed  Google Scholar 

  10. Leff-Gelman P, Flores-Ramos M, Carrasco AEÁ, Martínez ML, Takashima MFS, Coronel FMC, et al. Cortisol and DHEA-S levels in pregnant women with severe anxiety. BMC Psychiatry. 2020;20:393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boiko AS, Mednova IA, Kornetova EG, Bokhan NA, Semke AV, Loonen AJM, et al. Cortisol and DHEAS related to metabolic syndrome in patients with schizophrenia. Neuropsychiatr Dis Treat. 2020;16:1051–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu L, Huang X, Li S, Mao D, Shen Z, Khadaroo PA, et al. A meta-analysis of the medium- and long-term effects of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass. BMC Surg. 2020;20:30.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martenstyn J, King M, Rutherford C. Impact of weight loss interventions on patient-reported outcomes in overweight and obese adults with type 2 diabetes: a systematic review. J Behav Med. 2020;43:873–91.

    Article  PubMed  Google Scholar 

  14. Allam MM, El-Zawawy HT. Type 2 diabetes mellitus non-surgical remission: a possible mission. J Clin Transl Endocrinol. 2019;18:100206.

    PubMed  PubMed Central  Google Scholar 

  15. Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:342–62.

    Article  CAS  PubMed  Google Scholar 

  16. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for medical care of patients with obesity. Endocrine Pract. 2016;22:1–203.

    Article  Google Scholar 

  17. Ghiassi S, Morton JM. Safety and efficacy of bariatric and metabolic surgery. Curr Obes Rep. 2020;9:159–64.

    Article  PubMed  Google Scholar 

  18. Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab. 2015;19:160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ricci MA, De Vuono S, Scavizzi M, Gentili A, Lupattelli G. Facing morbid obesity: how to approach it. Angiology. 2016;67:391–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ali H, El-Syed MK, Saad RM. Effects of laparoscopic sleeve gastrectomy on hypertensive morbidly obese patients. Egypt J Hosp Med. 2019;74:1804–8.

    Article  Google Scholar 

  21. Khalaj A, Tasdighi E, Hosseinpanah F, Mahdavi M, Valizadeh M, Farahmand E, et al. Two-year outcomes of sleeve gastrectomy versus gastric bypass: first report based on Tehran obesity treatment study (TOTS). BMC Surg. 2020;20:160.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Graham C, Switzer N, Reso A, Armstrong C, Church N, Mitchell P, et al. Sleeve gastrectomy and hypertension: a systematic review of long-term outcomes. Surg Endosc. 2019;33:3001–7.

    Article  PubMed  Google Scholar 

  23. Outón S, Galceran I, Pascual J, Oliveras A. Central blood pressure in morbid obesity and after bariatric surgery. Nefrologia. 2020;40:217–22.

    Article  PubMed  Google Scholar 

  24. Jabbour G, Salman A. Bariatric surgery in adults with obesity: the impact on performance, metabolism, and health indices. Obes Surg. 2021;31:1767–89.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Akpinar EO, Liem RSL, Nienhuijs SW, Greve JWM, Marang-van de Mheen PJ, Dutch Audit for Treatment of Obesity Research Group. Metabolic effects of bariatric surgery on patients with type 2 diabetes: a population-based study. Surg Obes Relat Dis. 2021;S1550-7289:00096–4.

    Google Scholar 

  26. Benaiges D, Más-Lorenzo A, Goday A, Ramon JM, Chillarón JJ, Pedro-Botet J, et al. Laparoscopic sleeve gastrectomy: more than a restrictive bariatric surgery procedure? World J Gastroenterol. 2015;21:11804–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heffron SP, Parikh A, Volodarskiy A, Ren-Fielding C, Schwartzbard A, Nicholson J, et al. Changes in lipid profile of obese patients following contemporary bariatric surgery: a meta-analysis. Am J Med. 2016;129:952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Berckel MMG, van Loon SLM, Boer AK, Scharnhorst V, Nienhuijs SW. Visual analysis of biomarkers reveals differences in lipid profiles and liver enzymes before and after gastric sleeve and bypass. Obes Facts. 2021;14:1–11.

    Google Scholar 

  29. Al Dahmani KM, Kayyal YM, Gariballa S. Transient severe hypercholesterolemia following bariatric surgery treated successfully with increased food intake. Nutrition. 2016;32:394–6.

    Article  PubMed  Google Scholar 

  30. Azran C, Hanhan-Shamshoum N, Irshied T, Ben-Shushan T, Dicker D, Dahan A, et al. Hypothyroidism and levothyroxine therapy following bariatric surgery: a systematic review, meta-analysis, network meta-analysis, and meta-regression. Surg Obes Relat Dis. 2021;S1550-7289:00115–5.

    Google Scholar 

  31. Sanyal D, Raychaudhuri M. Hypothyroidism and obesity: an intriguing link. Indian J Endocrinol Metab. 2016;20:554–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lautenbach A, Stoll F, Mann O, Busch P, Huber TB, Kielstein H, et al. Long-term improvement of chronic low-grade inflammation after bariatric surgery. Obes Surg. 2021;5:1–8.

    Google Scholar 

  33. Oliveras A, Molina L, Goday A, Sans L, Riera M, Vazquez S, et al. Effect of bariatric surgery on cardiac structure and function in obese patients: Role of the renin-angiotensin system. J Clin Hypertens. 2021;23:181–92.

    Article  Google Scholar 

  34. Nguyen NT, Goldman CD, Ho HS, Gosselin RC, Singh A, Wolfe BM. Systemic stress response after laparoscopic and open gastric bypass. J Am Coll Surg. 2002;194:557–66. discussion 566-7

    Article  PubMed  Google Scholar 

  35. Manco M, Fernández-Real JM, Valera-Mora ME, Déchaud H, Nanni G, Tondolo V, et al. Massive weight loss decreases corticosteroid-binding globulin levels and increases free cortisol in healthy obese patients: an adaptive phenomenon? Diabetes Care. 2007;30:1494–500.

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz-Tovar J, Oller I, Galindo I, Llavero C, Arroyo A, Calero A, et al. Change in levels of C-reactive protein (CRP) and serum cortisol in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg. 2013;23:764–9.

    Article  PubMed  Google Scholar 

  37. Cornejo-Pareja I, Clemente-Postigo M, Tinahones FJ. Metabolic and endocrine consequences of bariatric surgery. Front Endocrinol. 2019;10:626.

    Article  Google Scholar 

  38. Rosmond R, Holm G, Björntorp P. Food-induced cortisol secretion in relation to anthropometric, metabolic and haemodynamic variables in men. Int J Obes Relat Metab Disord. 2000;24:416–22.

    Article  CAS  PubMed  Google Scholar 

  39. Woods CP, Corrigan M, Gathercole L, Taylor A, Hughes B, Gaoatswe G, et al. Tissue specific regulation of glucocorticoids in severe obesity and the response to significant weight loss following bariatric surgery (BARICORT). J Clin Endocrinol Metab. 2015;100:1434–44.

    Article  CAS  PubMed  Google Scholar 

  40. Beiglböck H, Fellinger P, Ranzenberger-Haider T, Itariu B, Prager G, Kautzky-Willer A, et al. Pre-operative obesity-associated hyperandrogenemia in women and hypogonadism in men have no impact on weight loss following bariatric surgery. Obes Surg. 2020;30:3947–54.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Savastano S, Belfiore A, Guida B, Angrisani L, Orio F Jr, Cascella T, et al. Role of dehydroepiandrosterone sulfate levels on body composition after laparoscopic adjustable gastric banding in pre-menopausal morbidly obese women. J Endocrinol Investig. 2005;28:509–15.

    Article  CAS  Google Scholar 

  42. Klinge CM, Clark BJ, Prough RA. Dehydroepiandrosterone research: past, current, and future. Vitam Horm. 2018;108:1–28.

    Article  CAS  PubMed  Google Scholar 

  43. Straub RH, Glück T, Cutolo M, Georgi J, Helmke K, Schölmerich J, et al. The adrenal steroid status in relation to inflammatory cytokines (interleukin-6 and tumour necrosis factor) in polymyalgia rheumatica. Rheumatology. 2000;39:624–31.

    Article  CAS  PubMed  Google Scholar 

  44. Vurgun E, Memet B, Kocaturk E, Guntas G. Evaluation of serum 25-hydroxyvitamin D levels and cortisol/dehydroepiandrosterone sulfate ratio in chronic spontaneous urticaria. Turk J Biochem. 2021;46:191–6.

    Article  CAS  Google Scholar 

  45. Ruano-Campos A, Cruz-Utrilla A, López-Antoñanzas L, Luaces M, Pérez de Isla L, Rubio Herrera MÁ. et al. Evaluation of myocardial function following SADI-S. Obes Surg. 2021;31:3109–15.

    Article  PubMed  Google Scholar 

  46. Büber İ, Aykota MR, Sevgican CI, Adali MK. The effects of laparoscopic sleeve gastrectomy on cardiac diastolic function, aortic elasticity, and atrial electromechanics delay. Obes Surg.2021;31:3571–8.

    Article  PubMed  Google Scholar 

  47. Yang TWW, Johari Y, Burton PR, Earnest A, Shaw K, Hare JL, et al. Bariatric surgery in patients with severe heart failure. Obes Surg. 2020;30:2863–9.

    Article  PubMed  Google Scholar 

  48. Kaya BC, Elkan H. Impact of weight loss with laparoscopic sleeve gastrectomy on left ventricular diastolic function: a prospective study. Obes Surg. 2020;30:3280–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HTE: Conceived the presented research idea. Designed, planned, and directed the study. Supervised patient recruitment and management. Analyzed the data and wrote the manuscript. Critically reviewed the manuscript. AAE: Supervised patient recruitment and management. Critically reviewed the manuscript. KMK: Performed bariatric surgery for the patients. EME: Performed echocardiography for the patients. Participated in writing the draft. SMSG: Responsible for patient recruitment. Responsible for data collection.

Corresponding author

Correspondence to Hanaa Tarek El-Zawawy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ehtics

The study was approved by the regional ethics committee at Faculty of Medicine, Alexandria University, Egypt (reference number: 0201170) and followed the standards of the 1964 Declaration of Helsinki and its later amendments. Informed written consent was obtained from all the study participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Zawawy, H.T., El-Aghoury, A.A., Katri, K.M. et al. Cortisol/DHEA ratio in morbidly obese patients before and after bariatric surgery: Relation to metabolic parameters and cardiovascular performance. Int J Obes 46, 381–392 (2022). https://doi.org/10.1038/s41366-021-00997-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00997-x

This article is cited by

Search

Quick links