Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Hypothalamic long noncoding RNA AK044061 is involved in the development of dietary obesity in mice

Abstract

Background

Long noncoding RNAs (lncRNAs) have been implicated in various important biological processes, however, its role in energy balance and obesity remains largely unknown.

Methods

Differentially expressed lncRNAs in the hypothalamus of diet-induced obesity (DIO) mice versus chow-fed mice were identified by RNA sequencing. Lentivirus-mediated overexpression and knockdown of a novel lncRNA, AK044061, were used to assess its role in energy balance and the development of DIO. RNA immunoprecipitation (RIP) and pull down assays were carried out to analyze the interaction between lncRNA AK044061 and RelA, an NF-κB subunit.

Results

LncRNA AK044061 was upregulated in the hypothalamus of DIO mice. Acute intracerebroventricular (i.c.v.) infusion of glucose reduced the expression of lncRNA AK044061, whereas an overnight of fasting enhanced its expression. RNA in situ hybridization data showed that AK044061 was expressed in the neurons of the arcuate nucleus (ARC). Lentivirus-mediated overexpression of AK044061 in ARC cells, or in the neurons of the ARC nucleus led to an obesity-like phenotype and related metabolic disorders. Furthermore, knockdown of lncRNA AK044061 in Agouti-related peptide (AgRP)-expressing neurons mitigated DIO and its related metabolic dysregulations. In mechanism, we showed that lncRNA AK044061 was associated with RelA and could enhance the NF-κB reporter activity. The effect of lncRNA AK044061 on energy balance is mediated by NF-κB.

Conclusions

Our findings suggest that excessive lncRNA AK044061 in the ARC nucleus leads to energy imbalance and obesity. LncRNA AK044061 expressed in the AgRP neurons is important in the development of dietary obesity in mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dysregulation of hypothalamic lncRNA AK044061 in diet-induced obesity mice.
Fig. 2: Overexpression of lncRNA AK044061 in the ARC nucleus leads to an obesity-like phenotype and related metabolic dysregulations.
Fig. 3: Overexpression of AK044061 in the ARC neurons leads to an obesity-like phenotype and related metabolic comorbidities.
Fig. 4: lncRNA AK044061 expressed in AgRP neurons is crucial in DIO development.
Fig. 5: RelA mediates the effect of lncRNA AK044061 on energy balance.

Similar content being viewed by others

References

  1. Kalin S, Heppner FL, Bechmann I, Prinz M, Tschop MH, Yi CX. Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol. 2015;11:339–51.

    Article  PubMed  Google Scholar 

  2. Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci. 2017;20:484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011;14:351–5.

    Article  CAS  PubMed  Google Scholar 

  4. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    Article  CAS  PubMed  Google Scholar 

  5. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng JT, Wang L, Wang H, Tang FR, Cai WQ, Sethi G, et al. Insights into Biological Role of LncRNAs in Epithelial-Mesenchymal Transition. Cells. 2019;8:1178.

    Article  CAS  PubMed Central  Google Scholar 

  7. Pradas-Juni M, Hansmeier NR, Link JC, Schmidt E, Larsen BD, Klemm P, et al. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nat Commun. 2020;11:644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sallam T, Jones MC, Gilliland T, Zhang L, Wu X, Eskin A, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature. 2016;534:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tontonoz P, Wu X, Jones M, Zhang Z, Salisbury D, Sallam T. Long noncoding RNA facilitated gene therapy reduces atherosclerosis in a murine model of familial hypercholesterolemia. Circulation. 2017;136:776–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lan X, Yan J, Ren J, Zhong B, Li J, Li Y, et al. A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology. 2016;64:58–72.

    Article  CAS  PubMed  Google Scholar 

  11. Li P, Ruan X, Yang L, Kiesewetter K, Zhao Y, Luo H, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab. 2015;21:455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang L, Yang Z, Trottier J, Barbier O, Wang L. Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology. 2017;65:604–15.

    Article  CAS  PubMed  Google Scholar 

  13. Mi L, Zhao XY, Li S, Yang G, Lin JD. Conserved function of the long noncoding RNA Blnc1 in brown adipocyte differentiation. Mol Metab. 2017;6:101–10.

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Mi L, Yu L, Yu Q, Liu T, Wang GX, et al. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc Natl Acad Sci U S A. 2017;114:E7111–E7120.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alvarez-Dominguez JR, Bai Z, Xu D, Yuan B, Lo KA, Yoon MJ, et al. De novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte development. Cell Metab. 2015;21:764–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knoll M, Lodish HF, Sun L. Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol. 2015;11:151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci. 2008;11:998–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001;1:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. National Genomics Data Center M, Partners. Database resources of the national genomics data center in 2020. Nucleic Acids Res. 2020;48:D24–D33.

    Google Scholar 

  20. Zhang Q, Liu W, Liu C, Lin SY, Guo AY. SEGtool: a specifically expressed gene detection tool and applications in human tissue and single-cell sequencing data. Brief Bioinform. 2018;19:1325–36.

    Article  CAS  PubMed  Google Scholar 

  21. Wu L, Meng J, Shen Q, Zhang Y, Pan S, Chen Z, et al. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat Commun. 2017;8:15904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, et al. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci USA. 2004;101:10380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang G, Bai H, Zhang H, Dean C, Wu Q, Li J, et al. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron. 2011;69:523–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolfgang MJ, Cha SH, Sidhaye A, Chohnan S, Cline G, Shulman GI, et al. Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proc Natl Acad Sci U S A. 2007;104:19285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cha SH, Wolfgang M, Tokutake Y, Chohnan S, Lane MD. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc Natl Acad Sci U S A. 2008;105:16871–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen Q, Chen Z, Zhao F, Pan S, Zhang T, Cheng X, et al. Reversal of prolonged obesity-associated cerebrovascular dysfunction by inhibiting microglial Tak1. Nat Neurosci. 2020;23:832–41.

    Article  CAS  PubMed  Google Scholar 

  28. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–W16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horton RW, Meldrum BS, Bachelard HS. Enzymic and cerebral metabolic effects of 2-deoxy-D-glucose. J Neurochem. 1973;21:507–20.

    Article  CAS  PubMed  Google Scholar 

  30. Mesaros A, Koralov SB, Rother E, Wunderlich FT, Ernst MB, Barsh GS, et al. Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. Cell Metab. 2008;7:236–48.

    Article  CAS  PubMed  Google Scholar 

  31. Dallner OS, Marinis JM, Lu YH, Birsoy K, Werner E, Fayzikhodjaeva G, et al. Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat Med. 2019;25:507–16.

    Article  CAS  PubMed  Google Scholar 

  32. Valdearcos M, Xu AW, Koliwad SK. Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol. 2015;77:131–60.

    Article  CAS  PubMed  Google Scholar 

  33. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cirillo D, Blanco M, Armaos A, Buness A, Avner P, Guttman M, et al. Quantitative predictions of protein interactions with long noncoding RNAs. Nat Methods. 2016;14:5–6.

    Article  PubMed  Google Scholar 

  35. Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017;45:D43–D50.

    Article  CAS  PubMed  Google Scholar 

  36. Liu X, Li D, Zhang W, Guo M, Zhan Q. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 2012;31:4415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, et al. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. Diabetologia. 2020;63:811–24.

    Article  CAS  PubMed  Google Scholar 

  38. Ruan X, Li P, Cangelosi A, Yang L, Cao H. A long non-coding RNA, lncLGR, regulates hepatic glucokinase expression and glycogen storage during fasting. Cell Rep. 2016;14:1867–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, et al. LncRNA-FEZF1-AS1 Promotes Tumor Proliferation and Metastasis in Colorectal Cancer by Regulating PKM2 Signaling. Clin Cancer Res. 2018;24:4808–19.

    Article  CAS  PubMed  Google Scholar 

  40. Guo H, Liu J, Ben Q, Qu Y, Li M, Wang Y, et al. The aspirin-induced long non-coding RNA OLA1P2 blocks phosphorylated STAT3 homodimer formation. Genome Biol. 2016;17:24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;344:310–3.

    Article  CAS  Google Scholar 

  42. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017;31:591–606 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qu L, Wu Z, Li Y, Xu Z, Liu B, Liu F, et al. A feed-forward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells. Nat Commun. 2016;7:12692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cai D, Khor S. “Hypothalamic microinflammation” paradigm in aging and metabolic diseases. Cell Metab. 2019;30:19–35.

    Article  CAS  PubMed  Google Scholar 

  45. Jais A, Bruning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest. 2017;127:24–32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Purkayastha S, Zhang G, Cai D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-β and NF-κB. Nat Med. 2011;17:883–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, et al. Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response. Nat Med. 2014;20:1001–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ghosh S, Hayden MS. New regulators of NF-κB in inflammation. Nat Rev Immunol. 2008;8:837–48.

    Article  CAS  PubMed  Google Scholar 

  49. Mao X, Su Z, Mookhtiar AK. Long non-coding RNA: a versatile regulator of the nuclear factor-κB signalling circuit. Immunology. 2017;150:379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-κB pathway and cell adhesion molecules during inflammation. FASEB J. 2018;32:4070–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81573146 and 91539125 to G.Z., 31822030 to A.Y.G., 31801113 to Q.Z.), the Young Thousand Talents Program of China and the Natural Science Foundation of Hubei Province (2019CFB591 to Z.M.).

Author information

Authors and Affiliations

Authors

Contributions

JL and JLL designed and performed the experiments, and analyzed the data. QZ and HS analyzed the data and provided technical support. GZ conceived the study. GZ, ZM and AYG designed the experiments, analyzed the data and wrote the paper. All authors commented on the paper.

Corresponding authors

Correspondence to An-Yuan Guo, Zhaowu Ma or Guo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Long, J., Zhang, Q. et al. Hypothalamic long noncoding RNA AK044061 is involved in the development of dietary obesity in mice. Int J Obes 45, 2638–2647 (2021). https://doi.org/10.1038/s41366-021-00945-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-00945-9

Search

Quick links