Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal models

Diet-induced obesity suppresses cortical bone accrual by a neuropeptide Y-dependent mechanism

Abstract

Objective

To determine whether age and neuropeptide Y (NPY) were involved in the skeletal response to extended periods of diet-induced obesity.

Methods

Male wild-type (WT) and NPY null (NPYKO) mice were fed a mild (23% fat) high-fat diet for 10 weeks from 6 or 16 weeks of age. Metabolism and bone density were assessed during feeding. Skeletal changes were assessed by microCT and histomorphometry.

Results

High-fat feeding in 6-week-old WT mice led to significantly increased body weight, adiposity and serum leptin levels, accompanied with markedly suppressed cortical bone accrual. NPYKO mice were less susceptible to fat accrual but, importantly, displayed a complete lack of suppression of bone accrual or cortical bone loss. In contrast, when skeletally mature (16 week old) mice underwent 10 weeks of fat feeding, the metabolic response to HFD was similar to younger mice, however bone mass was not affected in either WT or NPYKO. Thus, growing mice are particularly susceptible to the detrimental effects of HFD on bone mass, through suppression of bone accrual involving NPY signalling.

Conclusion

This study provides new insights into the relationship between the opposing processes of a positive weight/bone relationship and the negative ‘metabolic’ effect of obesity on bone mass. This negative effect is particularly active in growing skeletons, which have heightened sensitivity to changes in obesity. In addition, NPY is identified as a fundamental driver of this negative ‘metabolic’ pathway to bone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Australian Bureau of Statistics. Australian Health Survey. Australian Bureau of Statistics: Canberra, Australia; 2011–2012.

  2. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315:2292–9.

    Article  CAS  Google Scholar 

  3. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

    Article  CAS  Google Scholar 

  4. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  Google Scholar 

  5. Bacha F, Gidding SS. Cardiac abnormalities in youth with obesity and type 2 diabetes. Curr Diab Rep. 2016;16:62.

    Article  Google Scholar 

  6. Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Mineral Res. 1993;8:567–73.

    Article  CAS  Google Scholar 

  7. Ho-Pham LT, Nguyen UD, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2014;99:30–8.

    Article  CAS  Google Scholar 

  8. Compston J. Obesity and fractures in postmenopausal women. Curr Opin Rheumatol. 2015;27:414–9.

    Article  Google Scholar 

  9. Dimitri P, Jacques RM, Paggiosi M, King D, Walsh J, Taylor ZA, et al. Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab. 2015;100:594–602.

    Article  CAS  Google Scholar 

  10. Mosca LN, Goldberg TB, da Silva VN, da Silva CC, Kurokawa CS, Bisi Rizzo AC, et al. Excess body fat negatively affects bone mass in adolescents. Nutrition. 2014;30:847–52.

    Article  Google Scholar 

  11. Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;24:278–91.

    Article  CAS  Google Scholar 

  12. Cao JJ, Gregoire BR, Gao H. High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone. 2009;44:1097–104.

    Article  CAS  Google Scholar 

  13. Cao JJ, Sun L, Gao H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci. 2010;1192:292–7.

    Article  CAS  Google Scholar 

  14. Fehrendt H, Linn T, Hartmann S, Szalay G, Heiss C, Schnettler R, et al. Negative influence of a long-term high-fat diet on murine bone architecture. Int J Endocrinol. 2014;2014:318924.

    Article  Google Scholar 

  15. Inzana JA, Kung M, Shu L, Hamada D, Xing LP, Zuscik MJ, et al. Immature mice are more susceptible to the detrimental effects of high fat diet on cancellous bone in the distal femur. Bone. 2013;57:174–83.

    Article  CAS  Google Scholar 

  16. Lecka-Czernik B, Stechschulte LA, Czernik PJ, Dowling AR. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol Cell Endocrinol. 2015;410:35–41.

    Article  CAS  Google Scholar 

  17. Ionova-Martin SS, Do SH, Barth HD, Szadkowska M, Porter AE, Ager JW 3rd, et al. Reduced size-independent mechanical properties of cortical bone in high-fat diet-induced obesity. Bone. 2010;46:217–25.

    Article  CAS  Google Scholar 

  18. Fujita Y, Watanabe K, Maki K. Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice. J Musculoskelet Neuron Interact. 2012;12:84–94.

    CAS  Google Scholar 

  19. Scheller EL, Khoury B, Moller KL, Wee NK, Khandaker S, Kozloff KM, et al. Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss. Front Endocrinol. 2016;7:102.

    Article  Google Scholar 

  20. Wee NK, Herzog H, Baldock PA. Diet-induced obesity alters skeletal microarchitecture and the endocrine activity of bone. In: Watson RR, Mahadevan D, editors. Nutrition and diet in therapy of bone diseases. Wageningen Academic; 2016. pp 375–94.

  21. Shi YC, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, et al. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 2013;17:236–48.

    Article  CAS  Google Scholar 

  22. Lee SJ, Verma S, Simonds SE, Kirigiti MA, Kievit P, Lindsley SR, et al. Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice. J Neurosci. 2013;33:15306–17.

    Article  CAS  Google Scholar 

  23. Baldock PA, Sainsbury A, Allison S, Lin E-JD, Couzens M, Boey D. et al. Hypothalamic control of bone formation: distinct actions of letin and Y2 receptor pathways. J Bone Miner Res. 2005;20:1851–7.

    Article  CAS  Google Scholar 

  24. Wong IP, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, et al. Neuropeptide Y is a critical modulator of leptin’s regulation of cortical bone. J Bone Miner Res. 2013;28:886–98.

    Article  CAS  Google Scholar 

  25. Karl T, Duffy L, Herzog H. Behavioural profile of a new mouse model for NPY deficiency. Eur J Neurosci. 2008;28:173–80.

    Article  Google Scholar 

  26. Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res. 2006;21:1600–7.

    Article  CAS  Google Scholar 

  27. Zhang L, Lee IC, Enriquez RF, Lau J, Vahatalo LH, Baldock PA, et al. Stress- and diet-induced fat gain is controlled by NPY in catecholaminergic neurons. Mol Metab. 2014;3:581–91.

    Article  CAS  Google Scholar 

  28. Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, et al. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PloS ONE. 2009;4:e8415.

    Article  Google Scholar 

  29. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.

    Article  CAS  Google Scholar 

  30. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    Article  CAS  Google Scholar 

  31. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Ae Kim C, et al. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA. 2004;101:3258–63.

    Article  CAS  Google Scholar 

  32. Enriori PJ, Sinnayah P, Simonds SE, Garcia Rudaz C, Cowley MA. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci. 2011;31:12189–97.

    Article  CAS  Google Scholar 

  33. Igwe JC, Jiang X, Paic F, Ma L, Adams DJ, Baldock PA, et al. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J Cell Biochem. 2009;108:621–30.

    Article  CAS  Google Scholar 

  34. Zhang L, Macia L, Turner N, Enriquez RF, Riepler SJ, Nguyen AD, et al. Peripheral neuropeptide Y Y1 receptors regulate lipid oxidation and fat accretion. Int J Obes (Lond). 2010;34:357–73.

    Article  CAS  Google Scholar 

  35. Gautam J, Choudhary D, Khedgikar V, Kushwaha P, Singh RS, Singh D, et al. Micro-architectural changes in cancellous bone differ in female and male C57BL/6 mice with high-fat diet-induced low bone mineral density. Br J Nutr. 2014;111:1811–21.

    Article  CAS  Google Scholar 

  36. Kessler J, Koebnick C, Smith N, Adams A. Childhood obesity is associated with increased risk of most lower extremity fractures. Clin Orthop Relat Res. 2013;471:1199–207.

    Article  Google Scholar 

  37. Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab. 2015;26:125–35.

    Article  CAS  Google Scholar 

  38. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest. 2002;109:915–21.

    Article  CAS  Google Scholar 

  39. Wee NKY, Kulkarni RN, Horsnell H, Baldock PA. The brain in bone and fuel metabolism. Bone. 2016;82:56–63.

    Article  CAS  Google Scholar 

  40. Khor EC, Wee NK, Baldock PA. Influence of hormonal appetite and energy regulators on bone. Curr Osteoporos Rep. 2013;11:194–202.

    Article  Google Scholar 

  41. Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin EJ, et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem. 2007;282:19092–102.

    Article  CAS  Google Scholar 

  42. Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, Baile CA. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res. 2005;20:994–1001.

    Article  CAS  Google Scholar 

  43. Matic I, Matthews BG, Kizivat T, Igwe JC, Marijanovic I, Ruohonen ST, et al. Bone-specific overexpression of NPY modulates osteogenesis. J Musculoskelet Neuron Interact. 2012;12:209–18.

    CAS  Google Scholar 

  44. Compston J. Obesity and bone. Curr Osteoporos Rep. 2013;11:30–5.

    Article  Google Scholar 

  45. Greco EA, Francomano D, Fornari R, Marocco C, Lubrano C, Papa V, et al. Negative association between trunk fat, insulin resistance and skeleton in obese women. World J Diabetes. 2013;4:31–9.

    Article  Google Scholar 

  46. Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res. 2014;29:223–33.

    Article  Google Scholar 

  47. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20:2090–6.

    Article  Google Scholar 

  48. Macri EV, Gonzales Chaves MM, Rodriguez PN, Mandalunis P, Zeni S, Lifshitz F, et al. High-fat diets affect energy and bone metabolism in growing rats. Eur J Nutr. 2012;51:399–406.

    Article  CAS  Google Scholar 

  49. Bonnet N, Somm E, Rosen CJ. Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids. Bone. 2014;68:100–7.

    Article  CAS  Google Scholar 

  50. Lau BY, Fajardo VA, McMeekin L, Sacco SM, Ward WE, Roy BD, et al. Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats. Appl Physiol Nutr Metab. 2010;35:598–606.

    Article  CAS  Google Scholar 

  51. Dong XL, Li CM, Cao SS, Zhou LP, Wong MS. A high-saturated-fat, high-sucrose diet aggravates bone loss in ovariectomized female rats. J Nutr. 2016;146:1172–9.

    Article  CAS  Google Scholar 

  52. Tian L, Yu X, Fat, sugar, and bone health: a complex relationship. Nutrients 2017; 9: pii: E506. https://doi.org/10.3390/nu9050506.

    Article  Google Scholar 

  53. Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes. 2014;4:e135.

    Article  CAS  Google Scholar 

  54. Ortinau LC, Linden MA, Dirkes R, Rector RS, Hinton PS. Obesity and type 2 diabetes, not a diet high in fat, sucrose, and cholesterol, negatively impacts bone outcomes in the hyperphagic Otsuka Long Evans Tokushima Fatty rat. Bone. 2017;105:200–11.

    Article  CAS  Google Scholar 

  55. Munzberg H, Flier JS, Bjorbaek C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145:4880–9.

    Article  Google Scholar 

Download references

Acknowledgements

NW was supported by an Australian Postgraduate Award (APA) administered by UNSW Australia. We would also like to thank the Biological Testing Facility at the Garvan Institute for assistance with the animal work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Baldock.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wee, N.K.Y., Enriquez, R.F., Nguyen, A.D. et al. Diet-induced obesity suppresses cortical bone accrual by a neuropeptide Y-dependent mechanism. Int J Obes 42, 1925–1938 (2018). https://doi.org/10.1038/s41366-018-0028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0028-y

This article is cited by

Search

Quick links