Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation

Abstract

Histone H3 lysine-9 (H3K9) methylation is essential for retinoblastoma protein (RB)-mediated heterochromatin formation, epigenetic silencing of S-phase genes and permanent cell cycle arrest or cellular senescence. Besides as an H3K4 demethylase, lysine-specific demethylase-1 (LSD1) has been shown to promote H3K9 demethylation. However, it is unexplored whether LSD1 has a causal role in regulating cell cycle entry and senescence. Here we demonstrate that genetic depletion or pharmacological inhibition of LSD1 triggers G1 arrest and cellular senescence. Genome-wide chromatin immunoprecipitation-sequencing analysis reveals that LSD1 binding sites overlap significantly with those bound by the S-phase gene transcription factor E2F1. Gene ontology analysis demonstrates that a large portion of E2F1 and LSD1 cotargeted genes are involved in cell cycle and proliferation. Further analyses show that depletion of LSD1 increases the level of H3K9me2 and thereby represses expression of the LSD1-E2F1 cotarget genes, but has no effects on H3K4me2 level in those loci. In contrast, knockdown of the H3K4me2 reader PHF8 decreases the H3K4me2 level at the LSD1-E2F1 cotargeted loci, but this effect is rescued by codepletion of LSD1. Furthermore, the enzymatic activity of LSD1 is essential for H3K9me2 demethylation at cell cycle gene loci. Notably, cotreatment of chemotherapeutic agent camptothecin enhanced LSD1 inhibitor-induced senescence and growth inhibition of cancer cells in vitro and in mice. Our data reveal LSD1 as a molecular rheostat selectively regulating H3K9 demethylation at cell cycle gene loci, thereby representing a key player in oncogenesis and a viable target for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ben-Porath I, Weinberg RA . The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005; 37: 961–976.

    Article  CAS  PubMed  Google Scholar 

  2. Campisi J . Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 2011; 21: 107–112.

    Article  CAS  PubMed  Google Scholar 

  3. Lowe SW, Cepero E, Evan G . Intrinsic tumour suppression. Nature 2004; 432: 307–315.

    Article  CAS  PubMed  Google Scholar 

  4. Sharpless NE, Sherr CJ . Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15: 397–408.

    Article  CAS  PubMed  Google Scholar 

  5. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12: 3008–3019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001; 412: 561–565.

    Article  CAS  PubMed  Google Scholar 

  8. Lee MG, Wynder C, Cooch N, Shiekhattar R . An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005; 437: 432–435.

    Article  CAS  PubMed  Google Scholar 

  9. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941–953.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009; 138: 660–672.

    Article  CAS  PubMed  Google Scholar 

  11. Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437: 436–439.

    Article  CAS  PubMed  Google Scholar 

  12. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N et al. Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 2010; 464: 792–796.

    Article  CAS  PubMed  Google Scholar 

  13. Chau CM, Deng Z, Kang H, Lieberman PM . Cell cycle association of the retinoblastoma protein Rb and the histone demethylase LSD1 with the Epstein–Barr virus latency promoter Cp. J Virol 2008; 82: 3428–3437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuppuswamy M, Vijayalingam S, Zhao LJ, Zhou Y, Subramanian T, Ryerse J et al. Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. Mol Cell Biol 2008; 28: 269–281.

    Article  CAS  PubMed  Google Scholar 

  15. Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 2010; 31: 512–520.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 2007; 446: 882–887.

    Article  CAS  PubMed  Google Scholar 

  17. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 2015; 28: 57–69.

    Article  CAS  PubMed  Google Scholar 

  18. Adamo A, Sese B, Boue S, Castano J, Paramonov I, Barrero MJ et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 2011; 13: 652–659.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 2005; 8: 19–30.

    Article  CAS  PubMed  Google Scholar 

  20. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134: 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM . Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 2009; 15: 1312–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meloni AR, Smith EJ, Nevins JR . A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci USA 1999; 96: 9574–9579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi Y, Sawada J, Sui G, Affar el B, Whetstine JR, Lan F et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003; 422: 735–738.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Wang C . F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 2006; 25: 2615–2627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 2014; 507: 381–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39: 311–318.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 2016; 537: 553–557.

    Article  CAS  PubMed  Google Scholar 

  28. Vigo E, Muller H, Prosperini E, Hateboer G, Cartwright P, Moroni MC et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol 1999; 19: 6379–6395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stavropoulos P, Blobel G, Hoelz A . Crystal structure and mechanism of human lysine-specific demethylase-1. Nat Struct Mol Biol 2006; 13: 626–632.

    Article  CAS  PubMed  Google Scholar 

  30. Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 2010; 466: 508–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang H, Regan KM, Lou Z, Chen J, Tindall DJ . CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 2006; 314: 294–297.

    Article  CAS  PubMed  Google Scholar 

  32. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  33. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  34. Mallette FA, Gaumont-Leclerc MF, Ferbeyre G . The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 2007; 21: 43–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002; 109: 335–346.

    Article  CAS  PubMed  Google Scholar 

  36. Forneris F, Binda C, Dall'Aglio A, Fraaije MW, Battaglioli E, Mattevi A . A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J Biol Chem 2006; 281: 35289–35295.

    Article  CAS  PubMed  Google Scholar 

  37. Hou H, Yu H . Structural insights into histone lysine demethylation. Curr Opin Struct Biol 2010; 20: 739–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M et al. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 2006; 23: 377–387.

    Article  CAS  PubMed  Google Scholar 

  39. Forneris F, Binda C, Adamo A, Battaglioli E, Mattevi A . Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J Biol Chem 2007; 282: 20070–20074.

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 2007; 128: 505–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laurent B, Ruitu L, Murn J, Hempel K, Ferrao R, Xiang Y et al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Mol Cell 2015; 57: 957–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nair SS, Nair BC, Cortez V, Chakravarty D, Metzger E, Schule R et al. PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep 2010; 11: 438–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 2008; 319: 202–206.

    Article  CAS  PubMed  Google Scholar 

  44. Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 2010; 29: 1803–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol 2010; 12: 1108–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010; 28: 495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Langmead B, Salzberg SL . Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9: R137.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huang, da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

  50. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  51. Gu L, Frommel SC, Oakes CC, Simon R, Grupp K, Gerig CY et al. BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nat Genet 2015; 47: 22–30.

    Article  CAS  PubMed  Google Scholar 

  52. Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW et al. In vivo RNAi screen for BMI1 targets identifies TGF-beta/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 2013; 23: 660–676.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Binhua Zhou for plasmids. This work was supported in part by grants from the National Institutes of Health (CA134514, CA130908 and CA193239 to HH) and the Department of Defense (W81XWH-09-1-622 to HH).

Author contributions

HH conceived the study. YH, YZ, LW, LRB and YP performed the experiments. L(Liguo)W performed bioinformatics analysis of ChIP-seq data. YH, YZ and HH wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhao, Y., Wang, L. et al. LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation. Oncogene 37, 534–543 (2018). https://doi.org/10.1038/onc.2017.353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.353

This article is cited by

Search

Quick links