Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma

Abstract

We provide evidence that the IFN-regulated member of the Schlafen (SLFN) family of proteins, SLFN5, promotes the malignant phenotype in glioblastoma multiforme (GBM). Our studies indicate that SLFN5 expression promotes motility and invasiveness of GBM cells, and that high levels of SLFN5 expression correlate with high-grade gliomas and shorter overall survival in patients suffering from GBM. In efforts to uncover the mechanism by which SLFN5 promotes GBM tumorigenesis, we found that this protein is a transcriptional co-repressor of STAT1. Type-I IFN treatment triggers the interaction of STAT1 with SLFN5, and the resulting complex negatively controls STAT1-mediated gene transcription via interferon stimulated response elements. Thus, SLFN5 is both an IFN-stimulated response gene and a repressor of IFN-gene transcription, suggesting the existence of a negative-feedback regulatory loop that may account for suppression of antitumor immune responses in glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21: 2683–2710.

    Article  CAS  PubMed  Google Scholar 

  2. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  3. Desjardins A, Rich JN, Quinn JA, Vredenburgh J, Gururangan S, Sathornsumetee S et al. Chemotherapy and novel therapeutic approaches in malignant glioma. Front Biosci 2005; 10: 2645–2668.

    Article  CAS  PubMed  Google Scholar 

  4. Platanias LC . Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 2005; 5: 375–386.

    Article  CAS  PubMed  Google Scholar 

  5. Platanias LC . Interferons and their antitumor properties. J Interferon Cytokine Res 2013; 33: 143–144.

    Article  CAS  PubMed  Google Scholar 

  6. Wakabayashi T, Hatano N, Kajita Y, Yoshida T, Mizuno M, Taniguchi K et al. Initial and maintenance combination treatment with interferon-beta, MCNU (Ranimustine), and radiotherapy for patients with previously untreated malignant glioma. J Neurooncol 2000; 49: 57–62.

    Article  CAS  PubMed  Google Scholar 

  7. Natsume A, Ishii D, Wakabayashi T, Tsuno T, Hatano H, Mizuno M et al. IFN-beta down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res 2005; 65: 7573–7579.

    Article  CAS  PubMed  Google Scholar 

  8. Motomura K, Natsume A, Kishida Y, Higashi H, Kondo Y, Nakasu Y et al. Benefits of interferon-beta and temozolomide combination therapy for newly diagnosed primary glioblastoma with the unmethylated MGMT promoter: a multicenter study. Cancer 2011; 117: 1721–1730.

    Article  CAS  PubMed  Google Scholar 

  9. Bradley NJ, Darling JL, Oktar N, Bloom HJ, Thomas DG, Davies AJ . The failure of human leukocyte interferon to influence the growth of human glioma cell populations: in vitro and in vivo studies. Br J Cancer 1983; 48: 819–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fish EN, Platanias LC . Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12: 1691–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Porritt RA, Hertzog PJ . Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol 2015; 36: 150–160.

    Article  CAS  PubMed  Google Scholar 

  12. Mavrommatis E, Fish EN, Platanias LC . The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 2013; 33: 206–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katsoulidis E, Mavrommatis E, Woodard J, Shields MA, Sassano A, Carayol N et al. Role of interferon {alpha} (IFN{alpha})-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J Biol Chem 2010; 285: 40333–40341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sassano A, Mavrommatis E, Arslan AD, Kroczynska B, Beauchamp EM, Khuon S et al. Human Schlafen 5 (SLFN5) is a regulator of motility and invasiveness of renal cell carcinoma cells. Mol Cell Biol 2015; 35: 2684–2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geserick P, Kaiser F, Klemm U, Kaufmann SH, Zerrahn J . Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int Immunol 2004; 16: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  16. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006; 9: 287–300.

    Article  CAS  PubMed  Google Scholar 

  18. Madhavan S, Zenklusen JC, Kotliarov Y, Sahni H, Fine HA, Buetow K . Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol Cancer Res 2009; 7: 157–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Srikanth M, Das S, Berns EJ, Kim J, Stupp SI, Kessler JA . Nanofiber-mediated inhibition of focal adhesion kinase sensitizes glioma stemlike cells to epidermal growth factor receptor inhibition. Neuro Oncol 2013; 15: 319–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng H, Lopez GY, Kim CK, Alvarez A, Duncan CG, Nishikawa R et al. EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis. J Clin Invest 2014; 124: 3741–3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 2012; 10: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008; 321: 956–960.

    Article  CAS  PubMed  Google Scholar 

  23. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010; 28: 511–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Pal S, Bi Y, Tchou J, Davuluri RV . Isoform level expression profiles provide better cancer signatures than gene level expression profiles. Genome Med 2013; 5: 33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L . Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013; 31: 46–53.

    Article  CAS  PubMed  Google Scholar 

  26. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 2013; 41: D1040–D1046.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Cao CJ, Huang LL, Ke ZF, Luo CJ, Lin ZW et al. EFEMP1 promotes the migration and invasion of osteosarcoma via MMP-2 with induction by AEG-1 via NF-kappaB signaling pathway. Oncotarget 2015; 6: 14191–14208.

    PubMed  PubMed Central  Google Scholar 

  28. Ji F, Wang Y, Qiu L, Li S, Zhu J, Liang Z et al. Hypoxia inducible factor 1alpha-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. Int J Oncol 2013; 42: 1578–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagato S, Nakagawa K, Harada H, Kohno S, Fujiwara H, Sekiguchi K et al. Downregulation of laminin alpha4 chain expression inhibits glioma invasion in vitro and in vivo. Int J Cancer 2005; 117: 41–50.

    Article  CAS  PubMed  Google Scholar 

  30. Levy DE, Kessler DS, Pine R, Reich N, Darnell JE Jr . Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev 1988; 2: 383–393.

    Article  CAS  PubMed  Google Scholar 

  31. Reich N, Evans B, Levy D, Fahey D, Knight E Jr, Darnell JE Jr . Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc Natl Acad Sci USA 1987; 84: 6394–6398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kramer A, Green J, Pollard J Jr, Tugendreich S . Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014; 30: 523–530.

    Article  PubMed  Google Scholar 

  33. Parker BS, Rautela J, Hertzog PJ . Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 2016; 16: 131–144.

    Article  PubMed  Google Scholar 

  34. Ritchie KJ, Zhang DE . ISG15: the immunological kin of ubiquitin. Semin Cell Dev Biol 2004; 15: 237–246.

    Article  CAS  PubMed  Google Scholar 

  35. Gil MP, Bohn E, O'Guin AK, Ramana CV, Levine B, Stark GR et al. Biologic consequences of Stat1-independent IFN signaling. Proc Natl Acad Sci USA 2001; 98: 6680–6685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shuai K, Liu B . Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003; 3: 900–911.

    Article  CAS  PubMed  Google Scholar 

  37. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64: 7011–7021.

    Article  CAS  PubMed  Google Scholar 

  38. Eckerdt F, Alvarez A, Bell J, Arvanitis C, Iqbal A, Arslan AD et al. A simple, low-cost staining method for rapid-throughput analysis of tumor spheroids. Biotechniques 2016; 60: 43–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoon CH, Kim MJ, Kim RK, Lim EJ, Choi KS, An S et al. c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells. Oncogene 2012; 31: 4655–4666.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu T, Li X, Luo L, Wang X, Li Z, Xie P et al. Reversion of malignant phenotypes of human glioblastoma cells by beta-elemene through beta-catenin-mediated regulation of stemness-, differentiation- and epithelial-to-mesenchymal transition-related molecules. J Transl Med 2015; 13: 356.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bustos O, Naik S, Ayers G, Casola C, Perez-Lamigueiro MA, Chippindale PT et al. Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence. Gene 2009; 447: 1–11.

    Article  CAS  PubMed  Google Scholar 

  42. Neumann B, Zhao L, Murphy K, Gonda TJ . Subcellular localization of the Schlafen protein family. Biochem Biophys Res Commun 2008; 370: 62–66.

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 2012; 491: 125–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zoppoli G, Regairaz M, Leo E, Reinhold WC, Varma S, Ballestrero A et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci USA 2012; 109: 15030–15035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Companioni Napoles O, Tsao AC, Sanz-Anquela JM, Sala N, Bonet C, Pardo ML et al. SCHLAFEN 5 expression correlates with intestinal metaplasia that progresses to gastric cancer. J Gastroenterol 2016; 52: 39–49.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported in part by NIH grants CA161196, CA77816 and CA155566 and by grant 5I01CX000916 from the Department of Veterans Affairs. ADA was supported in part by NIH training grant T32CA070085, DS was supported in part by NIH training grant T32CA080621, and PL was supported in part by National Science Centre, Poland Grant 2016/22/M/NZ2/00548. We thank Dr John A. Kessler for providing the JK18 and JK46 GSC lines.

Data and materials availability

The microarray data was deposited to the Gene Expression Omnibus (GEO) repository under accession number GSE88771. The RNA-Seq data was deposited to the NCBI's Sequence Read Archive (SRA) repository under the registered BioProject PRJNA341338. The authors declare that all data supporting the findings of this study are available within the article and its Supplementary Information files are available from the corresponding author upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L C Platanias.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, A., Sassano, A., Saleiro, D. et al. Human SLFN5 is a transcriptional co-repressor of STAT1-mediated interferon responses and promotes the malignant phenotype in glioblastoma. Oncogene 36, 6006–6019 (2017). https://doi.org/10.1038/onc.2017.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.205

This article is cited by

Search

Quick links