Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

let-7b and let-7c microRNAs promote histone H2B ubiquitylation and inhibit cell migration by targeting multiple components of the H2B deubiquitylation machinery

Abstract

Monoubiquitylation of histone H2B (H2Bub1) is catalyzed mainly by the RNF20/RNF40 complex and erased by multiple deubiquitylating enzymes (DUBs). H2Bub1 influences many aspects of chromatin function, including transcription regulation and DNA repair. Cancer cells often display reduced levels of H2Bub1, and this reduction may contribute to cancer progression. The let-7 family of microRNAs (miRNAs) comprises multiple members with reported tumor-suppressive features, whose expression is frequently downregulated in cancer. We now report that let-7b and let-7c can positively regulate cellular H2Bub1 levels. Overexpression of let-7b and let-7c in a variety of non-transformed and cancer-derived cell lines results in H2Bub1 elevation. The positive effect of let-7b and let-7c on H2Bub1 levels is achieved through targeting of multiple mRNAs, coding for distinct components of the H2B deubiquitylation machinery. Specifically, let-7b and let-7c bind directly and inhibit the mRNAs encoding the DUBs USP42 and USP44, and also the mRNA encoding the adapter protein ATXN7L3, which is part of the DUB module of the SAGA complex. RNF20 knockdown (KD) strongly reduces H2Bub1 levels and increases the migration of non-transformed mammary epithelial cells and breast cancer-derived cells. Remarkably, overexpression of let-7b, which partly counteracts the effect of RNF20 KD on H2Bub1 levels, also reverses the pro-migratory effect of RNF20 KD. Likewise, ATXN7L3 KD also increases H2Bub1 levels and reduces cell migration, and this anti-migratory effect is abolished by simultaneous KD of RNF20. Together, our findings uncover a novel function of let-7 miRNAs as regulators of H2B ubiquitylation, suggesting an additional mechanism whereby these miRNAs can exert their tumor-suppressive effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao Y, Garcia BA . Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 2015; 7: a025064.

    PubMed  PubMed Central  Google Scholar 

  3. Audia JE, Campbell RM . Histone modifications and cancer. Cold Spring Harb Perspect Biol 2016; 8: a019521.

    PubMed  PubMed Central  Google Scholar 

  4. Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD . A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 2003; 11: 261–266.

    CAS  PubMed  Google Scholar 

  5. Kim J, Hake SB, Roeder RG . The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 2005; 20: 759–770.

    CAS  PubMed  Google Scholar 

  6. Zhu B, Zheng Y, Pham A-D, Mandal SS, Erdjument-Bromage H, Tempst P et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 2005; 20: 601–611.

    CAS  PubMed  Google Scholar 

  7. Atanassov BS, Koutelou E, Dent SY . The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett 2011; 585: 2016–2023.

    CAS  PubMed  Google Scholar 

  8. Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell 2012; 46: 662–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Knaap JA, Kumar BRP, Moshkin YM, Langenberg K, Krijgsveld J, Heck AJR et al. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol Cell 2005; 17: 695–707.

    CAS  PubMed  Google Scholar 

  10. Zhang X-Y, Varthi M, Sykes SM, Phillips C, Warzecha C, Zhu W et al. The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 2008; 29: 102–111.

    PubMed  PubMed Central  Google Scholar 

  11. Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S et al. A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 2008; 29: 92–101.

    CAS  PubMed  Google Scholar 

  12. Henry KW, Wyce A, Lo W-S, Duggan LJ, Emre NCT, Kao C-F et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 2003; 17: 2648–2663.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 2006; 125: 703–717.

    CAS  PubMed  Google Scholar 

  14. Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M . Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 2008; 10: 483–488.

    CAS  PubMed  Google Scholar 

  15. Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N et al. The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev 2008; 22: 2664–2676.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chernikova SB, Razorenova OV, Higgins JP, Sishc BJ, Nicolau M, Dorth JA et al. Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability. Cancer Res 2012; 72: 2111.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kari V, Shchebet A, Neumann H, Johnsen SA . The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair. Cell Cycle 2011; 10: 3495–3504.

    CAS  PubMed  Google Scholar 

  18. Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang S-Y et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of dna double-strand breaks. Mol Cell 2011; 41: 529–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira Douglas VNP et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 2011; 41: 515–528.

    CAS  PubMed  Google Scholar 

  20. Chandrasekharan MB, Huang F, Sun Z-W . Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci USA 2009; 106: 16686–16691.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW . Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 2011; 7: 113–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karpiuk O, Najafova Z, Kramer F, Hennion M, Galonska C, König A et al. The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol Cell 2012; 46: 705–713.

    CAS  PubMed  Google Scholar 

  23. Cole AJ, Clifton-Bligh R, Marsh DJ . Histone H2B monoubiquitination: roles to play in human malignancy. Endocr Relat Cancer 2015; 22: T19–T33.

    CAS  PubMed  Google Scholar 

  24. Johnsen SA . The enigmatic role of H2Bub1 in cancer. FEBS Lett 2012; 586: 1592–1601.

    CAS  PubMed  Google Scholar 

  25. Urasaki Y, Heath L, Xu CW . Coupling of glucose deprivation with impaired histone H2B monoubiquitination in tumors. PLoS ONE 2012; 7: e36775.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Z-J, Yang J-L, Wang Y-P, Lou J-Y, Chen J, Liu C et al. Decreased histone H2B monoubiquitination in malignant gastric carcinoma. World J Gastroenterol 2013; 19: 8099–8107.

    PubMed  PubMed Central  Google Scholar 

  27. Prenzel T, Begus-Nahrmann Y, Kramer F, Hennion M, Hsu C, Gorsler T et al. Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B. Cancer Res 2011; 71: 5739.

    CAS  PubMed  Google Scholar 

  28. Tarcic O, Pateras Ioannis S, Cooks T, Shema E, Kanterman J, Ashkenazi H et al. RNF20 links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. Cell Rep 2016; 14: 1462–1476.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Melling N, Grimm N, Simon R, Stahl P, Bokemeyer C, Terracciano L et al. Loss of H2Bub1 expression is linked to poor prognosis in nodal negative colorectal cancers. Pathol Oncol Res 2016; 22: 95–102.

    CAS  PubMed  Google Scholar 

  30. Wang Z, Zhu L, Guo T, Wang Y, Yang J . Decreased H2B monoubiquitination and overexpression of ubiquitin-specific protease enzyme 22 in malignant colon carcinoma. Hum Pathol 2015; 46: 1006–1014.

    CAS  PubMed  Google Scholar 

  31. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Google Scholar 

  32. Barber TD, McManus K, Yuen KWY, Reis M, Parmigiani G, Shen D et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA 2008; 105: 3443–3448.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333: 1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011; 43: 442–446.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Glinsky GV, Berezovska O, Glinskii AB . Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115: 1503–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu J, Yang D, Zhang H, Liu W, Zhao Y, Lu H et al. USP22 promotes tumor progression and induces epithelial–mesenchymal transition in lung adenocarcinoma. Lung Cancer 2015; 88: 239–245.

    PubMed  Google Scholar 

  37. Tang B, Tang F, Li B, Yuan S, Xu Q, Tomlinson S et al. High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget 2015; 6: 12654–12667.

    PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Yao L, Zhang X, Ji H, Wang L, Sun S et al. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol 2011; 137: 1245–1253.

    CAS  PubMed  Google Scholar 

  39. Zhang Y, van Deursen J, Galardy PJ . Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS ONE 2011; 6: e23389.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shema E, Kim J, Roeder RG, Oren M . RNF20 inhibits TFIIS-facilitated transcriptional elongation to suppress pro-oncogenic gene expression. Mol Cell 2011; 42: 477–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang F, Yu X . WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 2011; 41: 384–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Blank M, Tang Y, Yamashita M, Burkett SS, Cheng SY, Zhang YE . A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat Med 2012; 18: 227–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tarcic O, Granit RZ, Pateras IS, Masury H, Maly B, Zwang Y et al. RNF20 and histone H2B ubiquitylation exert opposing effects in Basal-Like versus luminal breast cancer. Cell Death Differ 2017; 24: 694–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang E, Kawaoka S, Yu M, Shi J, Ni T, Yang W et al. Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci USA 2013; 110: 3901–3906.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Beermann J, Piccoli MT, Viereck J, Thum T . Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 2016; 96: 1297–1325.

    CAS  PubMed  Google Scholar 

  46. Olive V, Minella AC, He L . Outside the coding genome, mammalian microRNAs confer structural and functional complexity. Sci Signal 2015; 8: re2–re2.

    PubMed  PubMed Central  Google Scholar 

  47. Peng Y, Croce CM . The role of MicroRNAs in human cancer. Signal TransductTarget Ther 2016; 1: 15004.

    Google Scholar 

  48. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007; 104: 15805–15810.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med 2011; 3: 279–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 2011; 41: 210–220.

    CAS  PubMed  Google Scholar 

  51. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TFE et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008; 112: 4202.

    CAS  PubMed  Google Scholar 

  52. Chen D-l, Zhang D-S, Lu Y-X, Chen L-Z, Zeng Z-l, He M-m et al. microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget 2015; 6: 10868–10879.

    PubMed  PubMed Central  Google Scholar 

  53. Jansen MPHM, Reijm EA, Sieuwerts AM, Ruigrok-Ritstier K, Look MP, Rodríguez-González FG et al. High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer. Breast Cancer Res Treat 2012; 133: 937–947.

    CAS  PubMed  Google Scholar 

  54. Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS et al. miRNA-34b Inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res 2013; 19: 73.

    CAS  PubMed  Google Scholar 

  55. Song QC, Shi ZB, Zhang YT, Ji L, Wang KZ, Duan DP et al. Downregulation of microRNA-26a is associated with metastatic potential and the poor prognosis of osteosarcoma patients. Oncol Rep 2014; 31: 1263–1270.

    CAS  PubMed  Google Scholar 

  56. Tommasi S, Pinto R, Danza K, Pilato B, Palumbo O, Micale L et al. miR-151-5p, targeting chromatin remodeler SMARCA5, as a marker for the BRCAness phenotype. Oncotarget 2016; 7: 80363–80372 Advance Online Publications: Page 3.

    PubMed  PubMed Central  Google Scholar 

  57. Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H et al. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer 2011; 10: 124.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dweep H, Sticht C, Pandey P, Gretz N . miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 2011; 44: 839–847.

    CAS  PubMed  Google Scholar 

  59. Dweep H, Gretz N . miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12: 697–697.

    CAS  PubMed  Google Scholar 

  60. Chiu SC, Chung HY, Cho DY, Chan TM, Liu MC, Huang HM et al. Therapeutic potential of microRNA let-7: tumor suppression or impeding normal stemness. Cell Transplant 2014; 23: 459–469.

    PubMed  Google Scholar 

  61. Lee H, Han S, Kwon CS, Lee D . Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 2016; 7: 100–113.

    CAS  PubMed  Google Scholar 

  62. Wang T, Wang G, Hao D, Liu X, Wang D, Ning N et al. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer. Mol Cancer 2015; 14: 125.

    PubMed  PubMed Central  Google Scholar 

  63. Wang X, Cao LEI, Wang Y, Wang X, Liu N, You Y . Regulation of let-7 and its target oncogenes (review). Oncol Lett 2012; 3: 955–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Akao Y, Nakagawa Y, Naoe T . let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006; 29: 903–906.

    CAS  PubMed  Google Scholar 

  65. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065.

    CAS  PubMed  Google Scholar 

  66. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M . MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 2008; 18: 549–557.

    CAS  PubMed  Google Scholar 

  67. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    CAS  PubMed  Google Scholar 

  68. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008; 68: 425–433.

    CAS  PubMed  Google Scholar 

  69. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109–1123.

    CAS  PubMed  Google Scholar 

  70. Hock AK, Vigneron AM, Vousden KH . Ubiquitin-specific peptidase 42 (USP42) functions to deubiquitylate histones and regulate transcriptional activity. J Biol Chem 2014; 289: 34862–34870.

    PubMed  PubMed Central  Google Scholar 

  71. Lang G, Bonnet J, Umlauf D, Karmodiya K, Koffler J, Stierle M et al. The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol Cell Biol 2011; 31: 3734–3744.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    CAS  PubMed  Google Scholar 

  73. Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126: 1203–1217.

    CAS  PubMed  Google Scholar 

  74. Hausser J, Syed AP, Bilen B, Zavolan M . Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res 2013; 23: 604–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG . Functional microRNA targets in protein coding sequences. Bioinformatics 2012; 28: 771–776.

    CAS  PubMed  Google Scholar 

  76. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lan X, Atanassov BS, Li W, Zhang Y, Florens L, Mohan RD et al. USP44 is an integral component oF N-COR that contributes to gene repression by deubiquitinating histone H2B. Cell Rep 2016; 17: 2382–2393.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Atanassov BS, Mohan RD, Lan X, Kuang X, Lu Y, Lin K et al. ATXN7L3 and ENY2 coordinate activity of multiple H2B deubiquitinases important for cellular proliferation and tumor growth. Mol Cell 2016; 62: 558–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Jusufović E, Rijavec M, Keser D, Korošec P, Sodja E, Iljazović E et al. let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non–small–cell lung cancer. PLoS ONE 2012; 7: e45577.

    PubMed  PubMed Central  Google Scholar 

  80. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7: 759–764.

    CAS  PubMed  Google Scholar 

  81. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    CAS  PubMed  Google Scholar 

  82. Cui S-Y, Huang J-Y, Chen Y-T, Song H-Z, Feng B, Huang G-C et al. Let-7c governs the acquisition of chemo- or radioresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant lung adenocarcinoma. Mol Cancer Res 2013; 11: 699.

    CAS  PubMed  Google Scholar 

  83. Wang P-Y, Sun Y-X, Zhang S, Pang M, Zhang H-H, Gao S-Y et al. Let-7c inhibits A549 cell proliferation through oncogenic TRIB2 related factors. FEBS Lett 2013; 587: 2675–2681.

    CAS  PubMed  Google Scholar 

  84. Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 2014; 342: 43–51.

    CAS  PubMed  Google Scholar 

  85. Zhao Y, Deng C, Wang J, Xiao J, Gatalica Z, Recker RR et al. Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Res Treat 2011; 127: 69–80.

    CAS  PubMed  Google Scholar 

  86. Ma L, Li G-Z, Wu Z-S, Meng G . Prognostic significance of let-7b expression in breast cancer and correlation to its target gene of BSG expression. Med Oncol 2013; 31: 773.

    PubMed  Google Scholar 

  87. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dawson S-J, Rueda OM, Aparicio S, Caldas C . A new genome-driven integrated classification of breast cancer and its implications. EMBO J 2013; 32: 617–628.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 2013; 497: 378–382.

    CAS  PubMed  Google Scholar 

  90. Haakensen VD, Nygaard V, Greger L, Aure MR, Fromm B, Bukholm IRK et al. Subtype-specific micro-RNA expression signatures in breast cancer progression. Int J Cancer 2016; 139: 1117–1128.

    CAS  PubMed  Google Scholar 

  91. Sun X, Xu C, Tang SC, Wang J, Wang H, Wang P et al. Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther 2016; 23: 83–89.

    CAS  PubMed  Google Scholar 

  92. Guan X . Cancer metastases: challenges and opportunities. Acta Pharm Sin B 2015; 5: 402–418.

    PubMed  PubMed Central  Google Scholar 

  93. Han X, Chen Y, Yao N, Liu H, Wang Z . MicroRNA let-7b suppresses human gastric cancer malignancy by targeting ING1. Cancer Gene Ther 2015; 22: 122–129.

    CAS  PubMed  Google Scholar 

  94. Hu X, Guo J, Zheng L, Li C, Zheng TM, Tanyi JL et al. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Mol Cancer Res 2013; 11: 240–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fuchs G, Oren M . Writing and reading H2B monoubiquitylation. Biochim Biophys Acta 2014; 1839: 694–701.

    CAS  PubMed  Google Scholar 

  96. Gambari R, Brognara E, Spandidos DA, Fabbri E . Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: new trends in the development of miRNA therapeutic strategies in oncology (review). Int J Oncol 2016; 49: 5–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29: 1580–1587.

    CAS  PubMed  Google Scholar 

  98. Stahlhut C, Slack FJ . Combinatorial action of microRNAs let-7 and miR-34 effectively synergizes with erlotinib to suppress non-small cell lung cancer cell proliferation. Cell Cycle 2015; 14: 2171–2180.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lal A, Thomas MP, Altschuler G, Navarro F, O’Day E, Li XL et al. Capture of microRNA–bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 2011; 7: e1002363.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ofra Golani from the Bioinformatics Unit of the Weizmann Institute for expert help with image analysis; Yonit Hoffman and Gali Brand for help with data analysis; and Sharath Chandra Arandkar and Ohad Tarcic for valuable discussions. This study was supported in part by the Dr Miriam and Sheldon G. Adelson Medical Research Foundation, grant 293438 (RUBICAN) from the European Research Council, a Center of Excellence grant from the Israel Science Foundation, the Robert Bosch Foundation (project 11.5.8000.0094) and the Moross Integrated Cancer Center. MO is incumbent of the Andre Lwoff chair in molecular biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Oren.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spolverini, A., Fuchs, G., Bublik, D. et al. let-7b and let-7c microRNAs promote histone H2B ubiquitylation and inhibit cell migration by targeting multiple components of the H2B deubiquitylation machinery. Oncogene 36, 5819–5828 (2017). https://doi.org/10.1038/onc.2017.187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.187

This article is cited by

Search

Quick links